














Figure 1b. The robots are placed within a circle at the
center of the arena at the beginning of each run, each
with a random orientation. A light source is placed at
the left-hand side of the arena. To measure order and
accuracy over time, we built a custom-made tracking
system. We place cardboard hats with a directional
marker on top of each robot.5 This marker is detected
by an overhead camera placed on one side of the arena,
at an height of about 3 meters and pointing towards
the floor (Figure 1b was taken by this camera). We
recorded a movie for each experiment and we analysed
each video off-line using the Halcon software.6 The
analysis of each video produced a file containing, for
each frame, the orientation of all robots.

We conduct two sets of experiments as we did in
simulation: without and with informed robots. All
parameters are kept the same as in the simulations. We
only change the number of robots and the duration of
the experiments in order to comply with arena-size con-
straints. We consider a proportion of 25% informed
robots. The parameters used with real robots are sum-
marized in Table 2. All other parameters are the same
as used in simulation (Table 1).

For each of the two sets of experiments, and for each
of the two motion control methods, we execute 10 runs
and report the median values of the metrics together
with their first and third quartiles.

5 Results without informed robots

In this section, we report results obtained without
informed robots, that is, g= 0. We first analyze the
transient and the steady-state behavior of the system in
simulation, and then we report the results obtained
with real robots.

5.1 Simulations

Transient behavior: Transient behavior:. Figure 2
shows the transient behavior of the system in a
medium-sized (N = 100) and in a large (N = 1000)
swarm. Figure 2a and (c) show the results obtained
without alignment control (Equation (2)). As we can
see, the swarm reaches an ordered state only when
using MDMC. The ordered state is reached within 700

simulated seconds in the medium-sized swarm and
within 1500 simulated seconds in large swarms. When
MIMC is used, the swarm remains disordered during
the entire experiment. Figure 2b and (d) show the
results obtained with alignment control. In this case,
the alignment state is reached with both motion control
methods, and the response of the system is much faster
than without alignment control. The performance of
MDMC and MIMC are comparable: the system self-
organizes in less than 200 seconds in medium-sized
swarms and in less than 400 seconds in large swarms.

Steady state and settling time without using
alignment control: Figure 3 shows the steady-state
behavior of the system for different swarm sizes. Figure
3a shows box-plots of the distributions of the asympto-
tic values of order reached without alignment control.
Figure 3b shows box-plots of the distributions of the
settling times without alignment control.

An important result of this paper is shown in
Figure 3a: by using MDMC, the system achieves an
ordered state without the need of alignment control for
all swarm sizes. The use of MDMC is critical for achiev-
ing this result. In fact, as shown in Figure 3a, the system
never reaches the ordered state when using MIMC.

Figure 3a also displays points indicating results that
were considered as outliers. These are of two different

Figure 3. MDMC versus MIMC in simulations with no informed robots and without alignment control. Box-plots of the
distribution of (a) steady-state values and (b) settling times of the order metric for different swarm sizes.
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types. Some correspond to cases where the system is
trying to self-organize but is too slow to reach its sta-
tionary state within the maximum run time of
T = 2500 s, and can be easily identified by looking at
the time series. The others correspond to cases in which
the swarm, instead of achieving aligned motion, con-
verged to a rotating state with fixed center of mass, low
order (c\0:5) and high angular rotation. A video of a
rotating state can be found in our supplementary mate-
rial page (Ferrante, Turgut, Huepe, et al., 2012). For
the purpose of our current study, we consider these as
outliers and focus on the convergence to parallel states.
Convergence to a rotating state is rare, becomes less
probable if more robots are used, and can be easily
suppressed by imposing minor constraints to the robot
dynamics. Its analysis goes beyond the scope of this
paper and will be presented in a parallel study.

In Figure 3b we report the settling time needed to
reach the ordered state. The settling time obtained with
MDMC increases with increasing swarm sizes, as
expected. We also noticed some outliers in the distribu-
tion of settling times for MDMC. These correspond to
runs where the systems first self-organizes in the rotat-
ing solution, and only later, due to noise, reorganizes in
the ordered solution. Settling times for MIMC are not
reported as the system does not converge to a steady
state in the allotted time (2500 s).

Steady state and settling time when using
alignment control: Additional results reported in the
supplementary material page (Ferrante, Turgut,
Huepe, et al., 2012) show that the system reaches the
ordered state for any swarm size and any motion con-
trol method when alignment control is used. This is
consistent with previous studies in flocking (Turgut,
Cxelikkanat, et al., 2008) and, additionally, it shows that

MDMC can also be implemented together with align-
ment control. In addition, for both methods the med-
ians of the settling times increase with increasing
swarm sizes.

5.2 Real robots

Figure 4 shows the results obtained with MDMC using
real robots. Results in Figure 4a show that, when align-
ment control is not used, the system reaches reasonable
levels of order also with the real robots. The difference
in performance when compared with the simulations
can be attributed to the different nature and amount of
noise on the real robots, which is very difficult to repli-
cate in simulation. Figure 4b shows that, when align-
ment control is used, results are less noisy. This is
because alignment control uses a communication
device, the RAB, that is noise-free. Its only source of
noise comes from orientation measurements via the
light sensor, which appears to be very precise. Results
with no alignment control also exhibit much larger fluc-
tuations of the order versus time than those with align-
ment control. Finally, note that both in Figure 4a and
in Figure 4b the order becomes constant at t ’ 280 s
and at t ’ 180 s, respectively. This is because by time
t ’ 280 s (respectively, t ’ 180 s) all experiments had
been stopped due to the robots having reached the bor-
ders of the arena.

6 Results with informed robots

In this section, we report results obtained with informed
robots. Analogously to the experiments in Section 5, we
analyze the transient and the steady-state behavior of
the system in simulation, and then we report the results
obtained with real robots.

Figure 4. Results with no informed robots using MDMC in the real-robots experiments. Time evolution of the order metric for
eight robots (a) without alignment control and (b) with alignment control. The line denotes the median of the distribution obtained
over R= 10 runs whereas the error bars span the interval between the 25% and the 75% quartiles of the distribution.
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6.1 Simulations

Transient behavior: Figure 5 shows the transient
behavior of the system for N = 100, N = 1000 and a
proportion of informed robots r = 0:01. Figure 5a and
5c show results obtained without alignment control.
For this case, the swarm reaches a value of accuracy
close to 1 only when using MDMC. This value is
reached within 1000 s and 1500 s for swarms with
N = 100 and N = 1000 robots, respectively. When
using MIMC, accuracy of the system remains d= 0:5.
As explained in Section 4.1, this is the value obtained
when the order metric is close to 0. In other words,
when using MIMC without alignment control, the sys-
tem is not able to reach an ordered state if the propor-
tion of informed robots is small (r= 0:01). Complete
results that include also the value of the order metric
are reported in our supplementary material page
(Ferrante, Turgut, Huepe, et al., 2012). However, as we
will show later, if the proportion of informed robots is
increased, the system self-organizes also with MIMC.
Figure 5b and 5d show the results obtained with

alignment control. In this case, a proportion r= 0:01

of informed robots is enough to reach high levels of
accuracy for both MIMC and MDMC. Furthermore,
MIMC seems to have better performance in terms of
convergence time.

Steady state and settling time of accuracy without
using alignment control: Figure 6 shows the steady-
state behavior of the system for different swarm sizes,
with r= 0:01 and without alignment control. Figure 6a
shows the distribution of the asymptotic value of the
accuracy metric. As we can see, MDMC dominates
MIMC in all three cases. In facts, the system does not
reach an ordered state when MIMC is used. This makes
the accuracy metric settle approximately at d ’ 0:5. In
Figure 6b, we see that the distribution of settling times
for MDMC has 1000 s as median value.

Steady state and settling time of accuracy when
using alignment control: Additional results reported
in the supplementary material page (Ferrante, Turgut,

Figure 5. MDMC versus MIMC in simulations with a proportion of ρ= 0:01 informed robots. Time evolution of the accuracy
metric for (a) 100 robots without alignment control, (b) 100 robots with alignment control, (c) 1000 robots without alignment
control and (d) 1000 robots with alignment control. The line denotes the median of the distribution obtained over R= 100 runs
whereas the error bars represent the interval spanned between the 25% and the 75% quartiles of the distribution.
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Huepe, et al., 2012) show that, when alignment control
is used, the steady-state values of the accuracy are
almost always close to 1. The few outliers that are
observed are due to the fact that, in rare cases, the sys-
tem splits into two groups. The median settling time, as
well as its spread, increases with increasing swarm sizes,
and increases more with MDMC than with MIMC.

Impact of the proportion of informed robots:
Figure 7 reports the results of the study conducted with
fixed swarm size N = 100 and various proportions of
informed robots. Figure 7a shows that, when alignment
control is not used, MDMC dominates MIMC in terms
of accuracy only for r= 0:01. In the other cases, the
two methods achieve very similar performance level.

However, as shown in Figure 8 and explained below,
this apparent equivalence between MDMC and MIMC
in accuracy does not result in an equivalence in the
effective traveled distance. Finally, Figure 7b shows
that the system converges faster with MDMC than
with MIMC in the r= 0:01 case, and that the opposite
is true for the other cases.

Additional experiments performed with alignment
control (Ferrante, Turgut, Huepe, et al., 2012) show
that the system achieves very good performance levels
in all cases. However, MDMC converges slower than
MIMC when the proportion of informed robots is low.

Effective traveled distance: Figure 8 shows the box-
plots of the distribution of the effective traveled distance

Figure 7. MDMC versus MIMC in simulations with informed robots, no alignment control, a swarm size of N= 100 robots and
ρ= f0:01,0:05,0:1,0:15,0:2g. Box-plots of the distribution of (a) steady-state values and (b) settling times of the accuracy metric for
different proportions of informed robots.

Figure 6. MDMC versus MIMC in simulations with a proportion of ρ= 0:01 informed robots without alignment control. Box-plots
of the distribution of (a) steady-state values and (b) settling times of the accuracy metric for different swarm sizes.
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for different swarm sizes (fixing r= 0:01) and of the
proportion of informed robots (fixing N = 100). When
alignment control is not used, MDMC consistently
outperforms MIMC for any swarm size (Figure 8a).
This was already known since, unless when the swarm
is small, the system cannot order or achieve high accu-
racy values when using MIMC. Figure 8b shows that
MDMC also consistently outperforms MIMC for any
proportion of informed robots. Although the system
can self-organize and achieve a high level of accuracy
for a larger proportion of informed robots, MDMC
still has the advantage of being able to let the swarm
travel farther in the desired direction of motion.

Additional experiments performed using alignment
control (Ferrante, Turgut, Huepe, et al., 2012) show
that the swarm is able to travel in the desired goal direc-
tion for all swarm sizes. We note that MIMC performs
slightly better than MDMC with alignment control,
although the latter is still competitive. Finally, we also
observe that the two methods perform almost equally
for a large proportion of informed robots.

6.2 Real robots

Figure 9 shows the results obtained with MDMC using
real robots. The results in Figure 9a show that, without

250 300

Figure 9. Results with informed robots using MDMC in real-robots experiments. Time evolution of the accuracy metric for a
group of eight robots and two informed robots (a) without alignment control and (b) with alignment control. The line denotes the
median of the distribution obtained over R= 10 runs whereas the error bars represent the interval spanned between the 25% and
the 75% quartiles of the distribution.

MIMC 0.2

MDMC 0.2

Figure 8. MDMC versus MIMC in simulations with informed robots and no alignment control. Box-plots of the distribution of
effective traveled distance for (a) different swarm sizes (ρ= 0:01) and (b) different proportions of informed robots (N= 100).
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alignment control, the system reaches reasonable levels
of accuracy. The difference in performance when com-
pared with simulation could be due to the different way
in which noise affects the system, since our simulation
does not attempt to model the noise realistically. Figure
9b shows that, surprisingly, MDMC performs worse in
real robots with alignment control. In fact, in a group
of eight real robots with two informed robots, the range
and bearing communication device made the swarm
agree on a common, random direction very quickly.
When this happened, the interactions between informed
and non-informed robots were not strong enough to let
the swarm change its direction to the desired heading.
Furthermore, the swarm, due to noise, continuously
changed its direction, which may explain the increase in
the spread and the decrease of the median of the distri-
bution after t = 100 s. By contrast, when alignment
control is not used, the swarm never agrees on a com-
mon direction. Hence, the movement of the swarm is
almost completely driven by the interaction between
the informed and the non-informed robots, that in this
case is enough to make the swarm move in the desired
direction of motion.

7 Related work and discussion

In this section, we review the literature on flocking. We
first discuss previous works in robotics, highlighting the
novelties of the current paper. We then discuss the most
representative work on flocking in statistical physics,
comparing the two different perspectives.

7.1 Robotics

In robotics, flocking has been studied for the last two
decades. We focus here on works where the method is
either directly tested on real robots or at least it has the
potential to be readily applied to real robots. We clas-
sify the literature according to two categories. In the
first, we include works that use alignment control; in
the second, those that do not use it.

7.1.1 Robotics studies with alignment control. We divide
studies where alignment control is used into two cate-
gories. In the first, we place studies that relied on exter-
nal hardware beyond what robots have on-board. In
the second, we place studies using on-board hardware
only.

In works belonging to the first category, authors
have either estimated the relative orientation of the
robots (Hayes & Dormiani-Tabatabaei, 2002) or emu-
lated an orientation sensing device using an external
computer (Holland et al., 2005).

Hayes and Dormiani-Tabatabaei (2002) proposed a
flocking method based on collision avoidance and velo-
city matching where all measurements were emulated

via an external computer and broadcast to the robots.
Robots compute the position and the velocity of the
center of mass of their neighbors, in order to maintain
cohesion and to align in the same direction.
Furthermore, each robot is informed about the direc-
tion to a goal area. Emulated external sensing was also
used by Holland et al. (2005), who developed a method
based on Reynolds’ rules for unmanned aerial vehicles.

In the works that fall within the second category, a
local communication unit is always used to implement
alignment control. In the work of Campo, Nouyan,
Birattari, Groß, and Dorigo (2006), robots have to
transport an object to a given location. This work is
one of the pioneering studies of coordinated motion
with purely on-board local communication, implemen-
ted via an LED ring and an omnidirectional camera.

Turgut, Cxelikkanat, et al. (2008) proposed a method
based on proximal control and alignment control that
achieves ordered motion in a random direction.
Proximal control and alignment control ware imple-
mented using proximity sensors and a virtual heading
sensor (VHS), respectively. The VHS combines a digital
compass and a communication unit: each robot mea-
sures its orientation and broadcasts it. In this way, the
orientation of a robot is sensed ‘virtually’ by its neigh-
bors. In a follow-up study, Gökcxe and Sxahin (2010)
introduced a goal-following behavior and studied the
effect that a noisy goal direction has on the swarm
motion. Cxelikkanat and Sxahin (2010), inspired by the
work of Couzin et al. (2005), provided a goal direction
to some of the robots and showed that these are
enough to guide a large swarm.

Ferrante, Turgut, Mathews, Birattari, and Dorigo
(2010) proposed a communication strategy that uses the
same range and bearing sensor considered in this paper.
The authors achieved good flocking performance in
environments where the goal direction changes over
time. Stranieri et al. (2011) studied self-organized flock-
ing in a heterogeneous swarm of robots, where some of
the robots use alignment control, and the rest of the
swarm only uses proximal control. Under these condi-
tions, the swarm can still organize and move in a com-
mon random direction. Recently, in Ferrante, Turgut,
Stranieri, et al. (2012), a self-adaptive communication
strategy was proposed to deal with flocking in situa-
tions with two conflicting goal directions with different
priorities. The authors showed that the swarm can
always follow the highest priority goal direction with-
out splitting.

7.1.2 Robotics studies without alignment control. In this
category, we place studies that do not use alignment
control. Instead, alignment to a given direction is typi-
cally induced by introducing a large majority of robots
that are informed about a goal direction (Matarić,
1994) or light-source direction (Spears et al., 2004).
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Matarić (1994) proposed a flocking method based
on a set of ‘basis behaviors’: safe-wandering, aggrega-
tion, dispersion and goal-following. The robots sense
obstacles in the environment, localize themselves with
respect to a set of stationary beacons and broadcast
their position. Robots moved cohesively in a goal direc-
tion known to all robots.

Kelly and Keating (1996) proposed a flocking
method based on a leader-following behavior. They
used an active infrared sensing system to sense the
range and bearing of other robots and a radio-
frequency system for dynamically electing the leader.
Multiple informed robots could co-exist in the swarm
and, in their presence, the swarm was able to split to
overcome obstacles.

Baldassarre, Nolfi, and Parisi (2003) used artificial
evolution to evolve a flocking behavior with a group of
four simulated robots. The robots were equipped with
proximity and light sensors. They used the former to
perceive each others’ relative position and orientation,
and used the latter to perceive a common goal
direction.

Nembrini, Winfield, and Melhuish (2002) proposed
a minimalistic method to achieve flocking using only a
local communication device and a sensor able to detect
obstacles and beacons. Some robots were informed
about a goal direction and signaled their status using
their beacon. They achieved a swarming behavior where
robots dynamically disconnect and reconnect to the
swarm.

Spears et al. (2004) proposed a flocking method
based on attraction/repulsion and viscous forces. The
robots form a regular lattice structure using the range
and bearing of their neighbors and move in a goal direc-
tion given by a light source perceived by the majority of
the robots.

Moslinger, Schmickl, and Crailsheim (2009) pro-
posed a method for minimalistic flocking based on
attraction and repulsion zones with different threshold
levels. By adjusting these levels, they achieved flocking
with a small group of robots in a constrained environ-
ment. In this work, as in our study, no robots used nei-
ther goal direction nor alignment information.
However, the flocking behavior was limited since the
group could not stay cohesive all of the time.

Monteiro and Bicho (2010) developed a control
method based on leader–follower dynamics to move a
swarm in formation towards a target. The location of
the target is known to some informed robots, assumed
to be identifiable within the swarm.

Recently, Tarcai et al. (2011) studied a system com-
posed of very simple remote-controlled (RC) boats sub-
ject to inelastic, natural collisions between each other.
They placed the boats in a toroidal pool and observed
that the swarm organizes in a clockwise or counter-
clockwise motion after a certain amount of time. They
also studied the effect of adding informed boats into

the system. This work can be considered of hybrid
nature, between robotics and statistical physics, but is
only analyzed here.

7.1.3 Discussion. The main contribution of this paper is
to propose a motion control method that achieves
flocking without alignment control and without
informed robots. Therefore, the unique characteristic
of this work with respect to the literature analyzed
above is that we explicitly study motion control, which
has received little or no attention at all.

Since our method can achieve flocking even in
absence of alignment control, it is unique when com-
pared with the literature discussed in Section 7.1.1.
When comparing with the studies discussed in Section
7.1.2 where alignment control was not used, our study
presents the following differences. Our analysis consid-
ers only a few informed individuals or no informed
individuals, while almost all of the previous studies
(Matarić, 1994; Kelly & Keating, 1996; Nembrini et al.,
2002; Baldassarre et al., 2003; Spears et al., 2004;
Monteiro & Bicho, 2010) included a large proportion of
informed robots, to help the system reach an ordered
state. The rest of the studies either achieved sub-optimal
performance in swarm cohesion when compared with
our work (Moslinger et al., 2009) (the swarm was split-
ting and rejoining very often in a bounded arena) or
analyzed a system under very specific environmental
conditions (Tarcai et al., 2011). To the best of the
authors’ knowledge, our work is the first to achieve
both ordered and cohesive flocking performance in an
environment with no constraints on the boundary
conditions.

7.2 Statistical physics

In statistical physics, flocking is studied with the aim of
searching for a theory of self-propelled collective
motion applicable to a wide range of systems. Often,
the approach is to consider simple models, such as
point-particle systems in which actuation or sensing
noise plays a role similar to that of temperature in stan-
dard physical systems. The resulting dynamics are ana-
lyzed using tools from non-equilibrium statistical
physics.

Here, we describe briefly some of the most represen-
tative statistical physics flocking studies. We classify
them into two groups: with and without explicit align-
ment rules. A complete survey can be found in Vicsek
and Zafiris (2010).

7.2.1 Statistical physics models with alignment. The first
flocking model developed within statistical physics was
SDP (self-driven particles) (Vicsek et al., 1995). In
SDP, particles advance at constant speed and use an
alignment rule: at every time step, each particle’s
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orientation is set to the average orientation of its neigh-
bors plus a noise component. The model includes nei-
ther attraction nor repulsion. The authors found that a
phase transition separates the ordered state (particles
moving in a common direction) from the disordered
state (particles with random orientation). The transi-
tion is reached by either varying the amount of noise or
the particle density.

Gregoire et al. (2003) extended the SDP model by
adding the attraction and repulsion rules. Noise is
introduced by adding a small randomly oriented vector
to the particles’ heading. As in the work of Vicsek et al.
(1995), the authors observed a transition between an
ordered and a disordered state at a critical noise value.
The details of this transition appear to be different, and
this issue is still a matter of debate.

Aldana and Huepe (2003) considered the vectorial
network model (VNM), in which individuals do not
move in space but are nodes of a network. Each node
has an associated orientation that evolves following an
SDP model where neighbors are nodes directly con-
nected through a link. The authors found that an
order–disorder transition equivalent to that in the SDP
model could be obtained only when long-range interac-
tions are present. The VNM was extended by Turgut,
Huepe, Cxelikkanat, Gökcxe, and Sxahin (2008) to analyze
the self-organized flocking of robots that follow the
method proposed by Turgut, Cxelikkanat, et al. (2008).

Finally, Cucker and Huepe (2008) introduced
informed individuals and studied theoretically the
behavior of the swarm. They considered a Laplacian
model, where each particle tries to minimize the differ-
ence between its velocity and that of its neighbors, that
are defined according to an adjacency matrix.

7.2.2 Statistical physics models without alignment. Szabó
et al. (2006) proposed one of the first models that
achieved ordered motion using locally interacting parti-
cles and no explicit alignment rule. The goal was to fit
experimental data they gathered on the dynamics of
collectively migrating tissue cells. The authors observed
an order–disorder phase transition occurring at critical
mean density of particles. Their model has many simi-
larities with MDMC. For example, particles interact
through attraction–repulsion forces and move forward
with non-constant speed. An important difference,
however, is that in their model each particle is not con-
strained to only translate parallel to its orientation but
can also advance sideways. Owing to this difference,
their model is not directly applicable to standard non-
holonomic mobile robots, which are constrained in
their movements by their wheels. Similar results to
those of Szabó et al. (2006) were also obtained by
Erdmann and Mikhailov (2005), who considered parti-
cle motion in two dimensions and later extended the

model to three dimensions (Streer, Erdmann, &
Schimansky-Geier, 2008).

Grossman, Aranson, and Jacob (2008) considered a
system composed of particles that interact only through
inelastic collisions on a 2D plane with reflecting circu-
lar boundary conditions. They observed complex phe-
nomena such as ordered motion, vortices and chaos.
They then studied the system in elliptic-shaped arenas,
showing that more complex dynamical patterns, such
as particles moving together in sub-groups, could be
observed.

In Romanczuk et al. (2009), the authors considered
particles with asymmetric non-isotropic interactions.
Their model represents ‘escape–pursuit’ dynamics. A
particle is attracted to particles in the front (pursuit)
and is repelled from particles on the back (escape).
Here again, the authors find ordered phases displaying
collective motion for high levels of the mean density.
At low densities, collective motion is only achieved for
specific combinations of the parameters that determine
the escape–pursuit dynamics.

7.2.3 Discussion. The above review allows us to specu-
late on the key mechanisms required for a method to
make a swarm self-organize to a flocking state with no
alignment rule and informed robots. For this to hap-
pen, we have observed in simulation videos (Ferrante,
Turgut, Huepe, et al., 2012) that robots must first oscil-
late in place while turning to adjust their orientation.
This process produces small coherent aligned regions
that gradually grow until they span the whole group,
which then starts moving. We have observed that, in
cases where the system fails to self-organize, robots
oscillate and turn in place, without creating coherently
moving regions. By combining these observations with
our survey of successful and unsuccessful methods, we
formulate here hypotheses on the conditions required
for a method to achieve collective motion.

A first component that we believe is required to
reach an ordered flocking state is continuous angular
dynamics. In most statistical physics models, the orien-
tation relaxes in a single time step to the direction dic-
tated by the model, leading to discrete jumps from one
angle to the next. These jumps often leave robots point-
ing in directions that are still not fully coherent with
their neighbors’, which may have switched to a very
different heading on the same time step. Instead, in
models that successfully order (such as MDMC and
Szabó et al. (2006)) each robot adjusts its angular velo-
city (and not its angle) at each time step, while the
angle relaxes in a continuous manner. These smooth
dynamics allow the system to gradually reconfigure as
it converges towards the ordered state.

Another component we believe is essential is the
dampening of the rotational and translational dynamics
as the robot approaches a stable, locally ordered state.
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In MIMC, this condition is not satisfied, and robots
close to a stable local configuration still have high
angular velocities, as the angle between the flocking
vector and the orientation vector is never zero. A simi-
lar situation arises if the forward component of the
robot speed is made constant by setting K1 = 0 in the
definition of the MDMC model. In this case, high rela-
tive velocities between neighbors remain possible when
close to a stable configuration.

The two conditions described above are satisfied by
MDMC and Szabó et al. (2006). However, a rigorous
confirmation of whether these conditions are indeed
necessary can only be achieved through a detailed theo-
retical study, which is currently ongoing.

8 Conclusions and future work

In this paper, we have presented a novel motion control
method to achieve flocking that can be implemented on
robots with limited hardware requirements. Only the
relative distance and bearing to neighboring robots are
needed to execute the attraction–repulsion dynamics
that leads to flocking. Furthermore, to implement
MDMC robots do not need to sense each others orien-
tation to perform alignment control, as required by the
Reynolds model. The proposed method could thus
make possible, in the future, the production of a very
large swarm of robots able to perform flocking at a
substantially lower cost due to the relatively simple
hardware required.

We have performed experiments using both a realis-
tic simulator and real robots. We showed that, with
MDMC, self-organized collective motion in a random
direction can be achieved. Also, MDMC can be imple-
mented including informed robots that have a desired
goal direction to be followed, and only a small propor-
tion of such robots is needed to lead a large swarm in
the goal direction. Furthermore, MDMC without align-
ment control and with informed robots allows the
swarm to travel farther in the goal direction, when com-
pared with the MIMC method, which was used as a ref-
erence. Finally, we carried out a systematic study where
we measured and compared the performance of the two
methods in various settings: with and without align-
ment control and with and without informed robots.

This work presents several opportunities for future
studies and/or applications. From a theoretical stand-
point, we are conducting a more rigorous analysis of
the proposed motion control method. We are studying
why the proposed model has the properties shown here
while others do not. We are also analyzing under which
conditions the swarm exhibits the rotating motion on
the spot that was mentioned in the results section.

From the point of view of possible applications, the
method could be applied to different types of robots,
requiring only relatively simple hardware.

An additional possible research direction would be
to extend the proposed method to flocking in three-
dimensional space. These results could be applied to
aerial and submarine swarms, where often communica-
tion and long-range sensing are very difficult to achieve.

Notes

1 The body-fixed reference frame is fixed to the center of a
robot, its x-axis points to the front of the robot and its
y-axis is coincident with the rotation axis of the wheels.

2 See http://www.swarmanoid.org/
3 See http://iridia.ulb.ac.be/argos/
4 Note that non-informed robots that do not use alignment

control do not need the light sensor. Therefore, the light
was not used in experiments without informed robots and
without alignment control.

5 Note that such hats are used for tracking purposes only
and are not detectable by the robots themselves.

6 See http://www.halcon.de/
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