The Inverse Knapsack Problem

par

JULIEN ROLAND

Rapport d’avancement des recherches présenté pour la Formation Doctorale en Sciences de l’Ingénieur

Supervisors: Yves de Smet, José Rui Figueira

Année académique 2009–2010
Résumé

Dans ce rapport, nous étudions le problème du sac-à-dos inverse qui consiste à trouver un ajustement minimal du vecteur de profit tel qu’un ensemble admissible d’éléments donné devienne une solution optimale. Après une introduction à l’optimisation inverse et aux notations, concepts et définitions utilisées dans ce rapport, deux modèles de sac-à-dos inverse sont considérés. Dans le premier, l’ajustement est mesuré par la norme L_∞. Un algorithme pseudo-polynomial est proposé pour le résoudre. Dans le second, l’ajustement est basé sur la norme L_1. Ce modèle est formulé sous la forme d’un programme linéaire en nombres entiers. Alors que le premier problème est prouvé comme étant co-NP-Complet, le second est co-NP-Difficile et des arguments sont mis en exergue contre la co-NP-Complétude de ce dernier. Pour ces deux modèles, un programme biniveau linéaire en nombres entiers est également présenté. Une analyse expérimentale de l’utilisation des algorithmes et modèles clos cette étude.

Nous concluons ce rapport par une première introduction à l’optimisation inverse multi-objectifs. Après une revue des concepts, notations et définitions relatifs à ce domaine, deux applications sont présentées. La première s’inscrit dans le domaine de l’analyse de portefeuille et la deuxième dans l’évaluation de la robustesse de solution efficaces. Justifié par la nature de l’optimisation multi-objectifs, une première taxonomie des différents problèmes inverse multi-objectifs est élaborée. Ce dernier chapitre met ainsi en lumière l’intérêt de cette nouvelle extension ainsi qu’un aperçu du grand nombre de sujets de recherche exploitables.
Contents

1 Introduction ... 1
 1.1 Concepts, Definitions, and Notation 2
 1.1.1 Combinatorial Optimization 4
 1.1.2 Inverse Optimization 7

2 The Inverse \{0,1\}-Knapsack Problem 9
 2.1 Introduction ... 9
 2.2 The Inverse \{0,1\}-Knapsack Problem under L_∞ 10
 2.2.1 Problem Definition 10
 2.2.2 Some Theoretical Results 11
 2.2.3 A Pseudo-polynomial Time Algorithm 15
 2.3 The Inverse \{0,1\}-Knapsack Problem under L_1 16
 2.3.1 Problem Definition 17
 2.3.2 Some Theoretical Results 17
 2.3.3 An Integer Linear Programming Formulation 19
 2.4 A Bilevel Programing Approach 21
 2.4.1 Linearization of the Inverse \{0,1\}-Knapsack Problem 21
 2.4.2 Analysis of the Bilevel Integer Linear Programming Problem ... 23
 2.5 Computational Experiments 24
 2.5.1 Design of the Experiments 24
 2.5.2 Statistical Analysis 25
 2.6 Conclusion .. 27

3 Venues for future research 28
 3.1 Concepts, Definitions, and Notation 28
 3.2 Applications ... 30
 3.3 A taxonomy of the inverse problems 31
 3.4 Thesis Schedule ... 33

A Computational Results 34
Chapter 1

Introduction

Inverse optimization is a very recent mathematical programming model with strong developments, and of a crucial importance in geophysical sciences, transportation and traffic flow, among others (see for example Tarantola 1987, Burton and Toint 1992, Sokkalingam et al. 1999, Ahuja and Orlin 2001). Let us illustrate this by two applications drawn from traffic modeling and facility location.

- **Traffic Modeling** (Burton and Toint 1992)
 Shortest path techniques can be used by network planers in order to determine what are the path taken by the users of a road network. However these procedures do not take into account the perceieved cost of the users. Indeed, usualy users evaluate paths in terms of time, money, distance, road’s quality, etc. Recovering the perceieved cost is an important step in the analysis of a network users’ behavior. Therefore, it is very useful to know some of the routes that are actually used (and thus considered as the optimal ones) and then incorporate this knowledge into the model, modifying the a priori costs in order to ensure the optimality of the paths used by the users in the modified network.

 This is an instance of the inverse shortest path problem. Given a network represented by a weighted graph and a given path. The question is to modify the weights as little as possible such that the given path becomes an optimal one.

- **Facility Location** (Heuberger 2004)
 Consider a road network and a set of clients. The facility location problem consist in installing facilities in the network in such a way that the distance to the clients is minimum. However, it can happen that the facility already exists and cannot be relocated with reasonable costs. In such a situation, one may want to modify the network as little as possible (for instance, by improving roads) in order to make optimal the current location of the facilities.

 This is an instance of the inverse facility location problem. Given a network represented by a weighted graph, the location of a set of clients, and the location of a set of facilities. The question is to modify the weights as little as possible such that the given location becomes an optimal one.
CHAPTER 1. INTRODUCTION

Broadly speaking, an inverse optimization problem can be described as follows: “Given an optimization problem and a feasible solution to it, the corresponding inverse optimization problem consists of finding a minimal adjustment of the profit vector such that the given solution becomes optimum” (Heuberger 2004). In the literature, this adjustment of the profit vector is generally performed under the L_1, the L_2, or the L_{∞} norm.

Recently, several approaches have been suggested for dealing with NP-Complete problems under the L_1 norm (e.g., the inverse integer linear programming problem by Huang (2005), Schaefer (2009), and the inverse \{0,1\}-knapsack problem by Huang (2005)). However, the said approaches are either computationally expensive, or do not solve all problem instances.

The aim of this report is both to focus on the inverse \{0,1\}-knapsack problem and to highlight venues for future research. This report is organised as follows: In the remaining of Chapter 1, concepts, definitions, and notation used through the report are given. In Chapter 2, the inverse \{0,1\}-knapsack problem analysed (the content of this chapter has been submitted to the Operations Research Journal on the 18 June 2010 and is currently under review). This analysis includes an application, models for both the L_1 and L_{∞} norms, a complexity analysis of these models, and a computational experiments of the methods proposed for solving them. Finally, in Chapter 3, venues for future research in the field of multi-objective optimization are reported. This includes applications, a taxonomy of the problems, and a work schedule for the forthcoming month.

1.1 Concepts, Definitions, and Notation

This section addresses several important concepts, their definitions and the basic notation required for the remaining chapters of this report. First, let us present the classical set notation.

- Let \mathbb{Z} be the set of integers,
- \mathbb{R} the set of reals,
- \mathbb{N} the set of natural numbers, that is the set of positives integers except zero,
- $\mathbb{Z}_0^+ = \mathbb{N}_0$ the set of positives integers with zero.

Let $\mathbb{R}^n = \{x_1, x_2, \ldots, x_i, \ldots, x_n\}$ be the set of real-valued vectors of length $n \geq 1$, $\mathbb{R}^{q \times n} = \{(c^1, c^2, \ldots, c^j, \ldots, c^q) : c^j \in \mathbb{R}^n \text{ for } j = 1, 2, \ldots, q\}$ be the set of real-valued matrices composed of n columns and q rows denoted by c^j with $j = 1, 2, \ldots, q$. A vector $x \in \mathbb{R}^n$ is a matrix composed of 1 column and n rows, and the transpose of x, denoted by x^T, is a matrix composed of n columns and 1 row. By abuse of notation, the zero vector 0 is a vector with all the components equal to zero. The canonical basis of \mathbb{R}^n is denoted by the n vectors e^i with $i = 1, 2, \ldots, n$.

Let $x, y \in \mathbb{R}^n$ be two vectors, we will note
chapter 1. introduction

- $x < y$ iff $\forall i \in \{1, 2, \ldots, n\} : x_i < y_i$,
- $x \leq y$ iff $\forall i \in \{1, 2, \ldots, n\} : x_i \leq y_i$,
- $x \neq y$ iff $\exists i \in \{1, 2, \ldots, n\} : x_i \neq y_i$,
- $x \leq y$ iff $x \leq y$ and $x \neq y$,

and the binary relations \geq, \leq, and $>$ are defined in a similar way.

Let $V, W \subseteq \mathbb{R}^n$ denote two sets of vectors. Then, the set addition of V and W (denoted by $V \oplus W$) can be stated as follows,

$$V \oplus W = \{x \in \mathbb{R}^n : x = x^1 + x^2, x^1 \in V, x^2 \in W\},$$

and by abuse of notation, $\{x\} \oplus W$ is also noted $x \oplus W$.

Definition 1.1.1 (Open Hypersphere (Steuer 1986)). Consider the space \mathbb{R}^n with the euclidean distance defined by $L_2(x, y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}$, for all $x, y \in \mathbb{R}^n$. A n-dimensional open hypersphere centred at $x^* \in \mathbb{R}^n$ with radius $\epsilon > 0$ is the set

$$H_\epsilon = \left\{x \in \mathbb{R}^n : L_2(x, x^*) < \epsilon \right\}.$$

Definition 1.1.2 (Interior Point (Steuer 1986)). A point $x^* \in S \subset \mathbb{R}^n$ is an interior point of S if and only if x^* belongs to a n-dimensional open hypersphere H_ϵ centred at x^* such that $H_\epsilon \subset S$.

Definition 1.1.3 (Boundary Point (Steuer 1986)). A boundary point of $S \subset \mathbb{R}^n$ is a point $x^* \in \mathbb{R}^n$ such that every n-dimensional open hypersphere H_ϵ centred at x^* contains points in S and points not in S.

Definition 1.1.4 (Bounded Set (Steuer 1986)). A set $S \subset \mathbb{R}^n$ is bounded if and only if there exists an n-dimensional hypersphere that contains S. Otherwise, the set is unbounded.

Consider q vectors $x^1, x^2, \ldots, x^j, \ldots, x^q \in \mathbb{R}^n$, and q scalars $\lambda_1, \lambda_2, \ldots, \lambda_j, \ldots, \lambda_q \geq 0$ with $\sum_{j=1}^{q} \lambda_j = 1$. The expression $\lambda_1 x^1 + \lambda_2 x^2 + \ldots + \lambda_j x^j + \ldots + \lambda_q x^q$ is said to be a convex combination of vectors $x^1, x^2, \ldots, x^j, \ldots, x^q$.

Definition 1.1.5 (Convex Set (Steuer 1986)). A set $S \subset \mathbb{R}^n$ is convex if and only if for any $x^1, x^2 \in S$ the point $\lambda x^1 + (1 - \lambda) x^2 \in S$ for all $\lambda \in [0, 1]$. Otherwise, the set is nonconvex.

Definition 1.1.6 (Extreme Point (Steuer 1986)). A point $x^* \in S \subset \mathbb{R}^n$ is an extreme point if and only if two points $x^1, x^2 \in S$, with $x^1 \neq x^2$ do not exist such that $x^* = \lambda x^1 + (1 - \lambda) x^2$ for some $\lambda \in [0, 1]$.

Definition 1.1.7 (Cone (Padberg 1995)). A subset $S \subseteq \mathbb{R}^n$ is a cone if and only if $x^1, x^2 \in S$ implies $\lambda_1 x^1 + \lambda_2 x^2 \in S$, for all $\lambda_1 \geq 0$ and $\lambda_2 \geq 0$.

Let us define the following two cones:
\[
\mathbb{R}_\geq^n = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^{n} e^i \alpha_i, \alpha_i \geq 0, i = 1, \ldots, n \},
\]
\[
\mathbb{R}_\leq^n = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^{n} e^i \alpha_i, \alpha_i \leq 0, i = 1, \ldots, n \}.
\]
The graphical representation of these cones are presented in Figures 1.1 and 1.2.

Definition 1.1.8 (Displaced Cone). Let \(S \subseteq \mathbb{R}^n \) be a cone and \(y \in \mathbb{R}^n \) a vector. The set \(y \oplus S \) is a displaced cone, which represents the translation of \(S \) from the origin to vector \(y \).

Consider a vector \(y \in \mathbb{R}^2 \), Figures 1.3 and 1.4 represent \(y \oplus \mathbb{R}_\geq^2 \) and \(y \oplus \mathbb{R}_\leq^2 \), respectively.

Definition 1.1.9 (Convex Hull). Let \(S \subseteq \mathbb{R}^n \). The set
\[
\{ x \in \mathbb{R}^n : x = \sum_{i=1}^{q} \mu_i x^i, \mu \in \mathbb{R}^q, \sum_{i=1}^{q} \mu_i = 1, x^i \in S, i = 1, 2, \ldots, n \}
\]
is the convex hull of \(S \), or \(\text{conv}(S) \) for short.

1.1.1 Combinatorial Optimization

Combinatorial optimization is defined by Schrijver (2003) as follows: “Combinatorial optimization searches for an optimum object in a finite collection of objects”. Where the
CHAPTER 1. INTRODUCTION

Figure 1.2: The cone \mathbb{R}^2_\leq represented graphically by the hatched zone.

Figure 1.3: The displaced cone $y \oplus \mathbb{R}^2_\leq$ represented graphically by the hatched zone.
number of objects is typically exponential in the size of the collection’s representation. More formally, an instance of a combinatorial optimization problem is defined as follows.

Definition 1.1.10 (An instance of a combinatorial optimization problem). Let X denote a finite (or infinite countable) set of feasible solutions, and $f : X \rightarrow \mathbb{R}$ an objective function. An instance of a combinatorial optimization problem is a pair (X, f), and it consists of finding a feasible solution $x^* \in X$ such that $x^* \in \arg\max\{f(x) : x \in X\}$.

Definition 1.1.11 (A combinatorial optimization problem). A combinatorial optimization problem is a set Π of instances of a combinatorial optimization problem.

Definition 1.1.12 (An instance of a linear combinatorial optimization problem). Let $E = \{e_1, e_2, \ldots, e_j, \ldots, e_n\}$ denote a finite set, $X \subseteq 2^E$ a family of subsets of E (the feasible set), and $c : E \rightarrow \mathbb{R}$ a linear profit function. For each solution $S \in X$, consider the linear expression $f(S) = \sum_{e \in S} c(e)$. A linear combinatorial optimization problem is a pair (X, c), and consists of finding an $S^* \in X$ such that $S^* \in \arg\max\{f(S) : S \in X\}$.

Definition 1.1.13 (An incidence vector). Let $E = \{e_1, e_2, \ldots, e_j, \ldots, e_n\}$ denote a finite set. Consider $S \subseteq E$. The incidence vector $x \in \{0, 1\}^n$ of E defining S can be stated as follows,

$$x_j = \begin{cases}
1, & \text{if } e_j \in S \\
0, & \text{otherwise}
\end{cases}$$

An instance of a linear $\{0, 1\}$-combinatorial optimization problem is an instance of a combinatorial optimization problem, where X is composed of feasible solutions with
components belonging to the set \(\{0,1\}\). The concept of incidence vector makes a clear link between Definitions 1.1.12 and 1.1.14.

Let us define a linear \(\{0,1\}\)-combinatorial optimization problem as a set \(\Pi\) of instances.

Definition 1.1.14 (An instance of a linear \(\{0,1\}\)-combinatorial optimization problem). Let \(X \subseteq \{x : x \in \{0,1\}^n\}\) denote a feasible set, \(J = \{1,2,\ldots,j\ldots,n\}\) the set of element indices, and \(c \in \mathbb{R}^n\) a profit vector. For each solution \(x \in X\), consider the linear expression \(f(x) = \sum_{j \in J} c_j x_j\). A linear \(\{0,1\}\)-combinatorial optimization problem is a pair \((X, c)\) and consists in finding \(x^* \in X\) such that \(x^* \in \arg \max \{f(x) : x \in X\}\).

The \(\{0,1\}\)-Knapsack problem (KP) is a well-known classical linear \(\{0,1\}\)-combinatorial optimization problem (see, for example, Martello and Toth (1990) or Kellerer et al. (1994) for a complete review of knapsack problems, their particular cases, extensions and formulations). Let \(J\) denote a set composed of \(n\) items with profits \(c_j \in \mathbb{N}_0 = \{0,1,2,\ldots\}\) and weights \(w_j \in \mathbb{N}_0\), for each \(j \in J\). Let \(W \in \mathbb{N}_0\) denote the capacity of a knapsack. The \(\{0,1\}\)-Knapsack problem consists in selecting a subset \(S \subseteq J\), such that the sum of the profits of the elements of \(S\) is maximized and the sum of weights of the same elements does not exceed the capacity of the knapsack.

The problem can be modeled as an integer linear programming problem as follows.

\[
\begin{align*}
\max \quad & f(x) = \sum_{j \in J} c_j x_j \\
\text{subject to:} \quad & \sum_{j \in J} w_j x_j \leq W \\
& x_j \in \{0,1\}, \quad j \in J.
\end{align*}
\]

(KP)

Consequently, an instance of KP is defined by a feasible set \(X = \{x \in \{0,1\}^n : \sum_{j \in J} w_j x_j \leq W\}\), and a profit vector \(c \in \mathbb{N}_0^n\), i.e., \((X, c)\). It is assumed that \(\sum_{j \in J} w_j > W\) and \(w_j \leq W\), for all \(j \in J\), otherwise, the problem is obvious.

1.1.2 Inverse Optimization

Consider very broadly what is an inverse optimization problem.

Definition 1.1.15 (The inverse optimization problem). Let \(\Pi\) denote an optimization problem, \((X, f) \in \Pi\) an instance of \(\Pi\), and \(x^0 \in X\) a feasible solution. The associated inverse problem consists of determining an instance \((X^*, f^*) \in \Pi\), that minimize a cost function \(\gamma : \Pi \times \Pi \to \mathbb{R}\), with respect to \((X, f)\) such that \(x^0\) is an optimal solution of \((X^*, f^*)\).

The problem can be modeled through the following bilevel optimization problem.

\[
\begin{align*}
\min \quad & \gamma((X, f), (X', f')) \\
\text{subject to:} \quad & f'(x^*) = f(x^0) \\
& x^* \in \arg \max \{f'(x) : x \in X'\} \\
& (X', f') \in \Pi
\end{align*}
\]
The definition inverse optimization problem is generally restricted in the literature to the so-called “Inverse optimization problem under the profit vector” (see for example Burton and Toint 1992, Ahuja and Orlin 2001).

Definition 1.1.16 (Inverse optimization problem under the profit vector). *Let \(\Pi \) denote a linear optimization problem, \((X, c) \in \Pi\) an instance of \(\Pi \) and \(x^0 \in X \) a feasible solution. The associated inverse problem consists in determining a profit vector \(d^* \in \mathbb{R}^n \) such that \(x^0 \) is an optimal solution of \((X, d^*)\) and \(\|d^* - c\|_p \) is minimum and where \(\|\cdot\|_p \) is an L\(_p\) norm.*

The problem can be stated as a bilevel optimization problem.

\[
\begin{align*}
\min & \quad \|d - c\|_p \\
\text{subject to:} & \quad d^T x^* = d^T x^0 \\
& \quad x^* \in \arg \max \{d^T x : x \in X\} \\
& \quad d \in \mathbb{R}^n
\end{align*}
\]
Chapter 2

The Inverse $\{0,1\}$-Knapsack Problem

2.1 Introduction

Since about half a century, knapsack problems have had a strong impact on a broad array of areas, such as project selection (Petersen 1967), capital budgeting (Lorie and Savage 1955, Weingartner 1966, Weingartner and Ness 1967), cutting stock and cargo-loading (Gilmore and Gomory 1966). In almost all these problems, one may stress that it is usually difficult to fix the benefits in the objective function with certainty.

Consider the following project selection problem as a motivation for the inverse $\{0,1\}$-knapsack problem under the L_∞ norm in a context of uncertainty. Let $J = \{1, 2, \ldots, j, \ldots, n\}$ denote a set of n projects with annual profits c^0_j and costs w_j for all $j \in J$. With an annual investment budget W, a decision maker chooses the optimal solution of this knapsack denoted by the binary-valued vector x^0 as the portfolio of the selected projects that maximize the profit value. The following year, due to economic and social changes, the profit values c^0_j are modified. Let c^1_j for all $j \in J$ denote the new profit values. According to the new values, the initial portfolio x^0 is no longer an optimal solution. The decision maker could ask the logical question, “Should I change my portfolio of projects?” Let us assume there is an uncertainty on each profit value c^1_j where the exact values belong to the range $[c^1_j - \delta, c^1_j + \delta]$ and where δ represents an uncertainty threshold. The decision maker could agree that x^0 is still an optimal solution if some conditions were fulfilled. For instance, it would be sufficient that all the initial profit values c^0_j belong to the range. Inverse optimization can be used to establish a more general condition as follows: let us measure the minimal adjustment of c^1 such that x^0 becomes optimum. If the minimal adjustment is less than δ, then x^0 is still an optimum. If no conditions are fulfilled, the decision maker could either choose another portfolio, or set a profit target for each project belonging to x^0.

This chapter studies the inverse $\{0,1\}$-knapsack problem. The adjustment is first measured under the L_∞ norm. The problem is theoretically studied and a proof of
its co-NP-Completeness is provided. Combinatorial arguments are used to present a pseudo-polynomial time algorithm. To our best knowledge, this is the first algorithm designed for solving the problem. The inverse \(0,1\)-knapsack problem under the \(L_1\) norm is then considered. The problem is theoretically studied and a proof of its co-NP-Hardness is also provided. Next, as elegantly proposed by Ahuja and Orlin (2001), optimality conditions are used to formulate this problem as an integer linear program. Such conditions are described in the dynamic programming algorithm for the \(0,1\)-knapsack problem. This implies that, if the profit vector is integer-valued, the inverse problem is reduced to solve an integer linear program. Otherwise, the inverse problem is solved by the linear relaxation of the integer linear program, which can be solved with a pseudo-polynomial time algorithm. Unlike the algorithm proposed by Huang (2005), our method can be used to solve all problem instances. Furthermore, comparing to the approach proposed by Schaefer (2009), this formulation can significantly reduce the number of variables.

This chapter also proposes a bilevel integer linear programming problem for solving the inverse \(0,1\)-knapsack problem. This implies that branch-and-bound (Moore and Bard 1990) and branch-and-cut (DeNegre and Ralphs 2009) algorithms can be used to solve it.

The methods proposed in this paper have been implemented and computational experiments were made on a large set of randomly generated instances. The purpose of the experiments is both to prove the feasibility of the approaches and to compare some of them.

This chapter is organized as follows: In Section 2, a pseudo-polynomial time algorithm is presented to solve the inverse \(0,1\)-knapsack problem under the \(L_\infty\) distance. In Section 3, an integer linear program for solving the inverse problem is stated in the context of the \(L_1\) distance. In Section 4, a bilevel programming approach is developed. In Section 5, computational experiments with knapsack problems under the \(L_\infty\) and the \(L_1\) norms are presented. We conclude with remarks and some avenues for future research.

2.2 The Inverse \(0,1\)-Knapsack Problem under \(L_\infty\)

This section deals with the problem and some theoretical results, which lead to proposing an algorithm for solving the inverse \(0,1\)-knapsack problem under the \(L_\infty\) distance. To our best knowledge, it is the first algorithm ever designed for such a purpose.

2.2.1 Problem Definition

Let \((X, c)\) denote an instance of the \(0,1\)-knapsack problem and \(x^0 \in X\) a feasible solution. Consider the \(L_\infty\) distance between two vectors \(c\) and \(d\), i.e., \(\max\{|c_1-d_1|, |c_2-d_2|, \ldots, |c_j-d_j|, \ldots, |c_n-d_n|\}\). The \(L_\infty\) inverse \(0,1\)-knapsack problem (IKP-\(\infty\)) can
be stated as follows:

\[
d^* \in \arg \min_{d} \max_{j \in J} \{|c_j - d_j|\}
\]

subject to:

\[
d^T x^* = d^T x^0
\]

\[
x^* \in \arg \max \{d^T x : x \in X\}
\]

(\text{IKP-}\infty)

IKP-\infty is a bilevel optimization problem which determines a profit vector \(d^* \in \mathbb{N}_0^n\), which minimizes the \(L_\infty\) distance with respect to \(c\) and such that \(x^0\) is an optimal solution of the modified knapsack problem \((X, d^*)\).

2.2.2 Some Theoretical Results

We start by analyzing the nature of some optimal solutions of IKP-\(\infty\). Based on a partition of \(J\) defined by \(J^0 = \{j \in J : x^0_j = 0\}\) and \(J^1 = \{j \in J : x^0_j = 1\}\), the first theorem establishes that an optimal solution \(d^*\) can be built by increasing \(c_j\), for all \(j \in J^1\) and by decreasing \(c_j\), for all \(j \in J^0\).

Theorem 2.2.1. There exists an optimal solution \(d^* \in \mathbb{N}_0^n\) of IKP-\(\infty\) where \(\forall j \in J^1 : d^*_j \geq c_j\) and \(\forall j \in J^0 : d^*_j \leq c_j\).

Proof. Let \(d \in \mathbb{N}_0^n\) denote any optimal solution of IKP-\(\infty\), \(J^{0>} = \{j \in J^0 : d_j > c_j\}\), \(J^{0<} = \{j \in J^0 : d_j \leq c_j\}\), \(J^{1<} = \{j \in J^1 : d_j < c_j\}\), and \(J^{1>} = \{j \in J^1 : d_j \geq c_j\}\). The constraints set of IKP-\(\infty\) implies that \(d^T x^0 \geq d^T x\) for all feasible solutions \(x \in X\). This can be written as follows:

\[
\sum_{j \in J^{1<}} d_j x^0_j + \sum_{j \in J^{1>}} d_j x^0_j \geq \sum_{j \in J^{1<}} d_j x_j + \sum_{j \in J^{1>}} d_j x_j + \sum_{j \in J^{0<}} d_j x_j + \sum_{j \in J^{0>}} d_j x_j
\]

by definition of \(J^{1<}\) and \(J^{0>}\), one obtains:

\[
\sum_{j \in J^{1<}} d_j x^0_j + \sum_{j \in J^{1<}} c_j x^0_j \geq \sum_{j \in J^{1<}} d_j x_j + \sum_{j \in J^{1<}} c_j x_j + \sum_{j \in J^{0<}} d_j x_j + \sum_{j \in J^{0>}} c_j x_j
\]

(2.1)

Let us define a vector \(d^*\) for all \(j \in J\) as follows:

\[
d^*_j = \begin{cases} c_j, & \text{if } j \in \{J^{1<} \cup J^{0>}\}, \\ d_j, & \text{otherwise}. \end{cases}
\]

From this definition, it is easy to see that \(\max_{j \in J} \{|c_j - d^*_j|\} \leq \max_{j \in J} \{|c_j - d_j|\}\) and that equation (2.1) implies \(d^*^T x^0 = \max\{d^T x : x \in X\}\). Therefore, \(d^*\) is an optimal solution of IKP-\(\infty\), and the theorem is proved.

\(\square\)

Let us define a vector \(d^k \in \mathbb{N}_0^n\) of distance at most \(k\) from vector \(c\) with respect to the \(L_\infty\) norm.
Definition 2.2.2 (Vector d^k). Given a $k \in \mathbb{N}_0$, for all $j \in J$,

$$d^k_j = \begin{cases}
\max\{0, c_j - k\}, & \text{if } x^0_j = 0, \\
c_j + k, & \text{if } x^0_j = 1.
\end{cases}$$

The following lemma provides an optimality condition for d^k based on the value of k.

Theorem 2.2.3. If d^* denotes an optimal solution of IKP-∞, with $k = \max_{j \in J}\{|c_j - d^*_j|\}$, then d^k is also an optimal solution of IKP-∞.

Proof. Let d^* denote an optimal solution of IKP-∞ such that $\max_{j \in J}\{|c_j - d^*_j|\} = k$, and $J^k = \{j \in J : (|c_j - d^*_j| < k) \land (d^*_j \neq 0)\}$. Based on Theorem 2.2.1, it can be assumed that $\forall j \in J^1 : d^*_j \geq c_j$ and $\forall j \in J^0 : d^*_j \leq c_j$. Therefore, if $|J^k| = 0$, then $d^* = d^k$. Let us assume that $|J^k| > 1$. Let $J^{1k} = J^1 \cap J^k$ and $J^{0k} = J^0 \cap J^k$. Thus, for all $x \in X$:

$$\sum_{j \in J \setminus J^k} d^*_j x^*_j + \sum_{j \in J^{1k}} d^*_j x^*_j \geq \sum_{j \in J \setminus J^k} d^k_j x^*_j + \sum_{j \in J^{1k}} d^k_j x^*_j + \sum_{j \in J^{0k}} d^k_j x^*_j$$

Based on the definition of d^k,

$$\sum_{j \in J \setminus J^k} d^k_j x^*_j + \sum_{j \in J^{1k}} d^k_j x^*_j \geq \sum_{j \in J \setminus J^k} d^k_j x_j + \sum_{j \in J^{1k}} d^k_j x_j + \sum_{j \in J^{0k}} d^k_j x_j.$$

Since $\sum_{j \in J^k} d^*_j x^*_j \geq \sum_{j \in J^k} d^k_j x_j$, one obtains:

$$\sum_{j \in J \setminus J^k} d^k_j x^*_j + \sum_{j \in J^{1k}} d^k_j x^*_j \geq \sum_{j \in J \setminus J^k} d^k_j x_j + \sum_{j \in J^{1k}} d^k_j x_j + \sum_{j \in J^{0k}} d^k_j x_j$$

Therefore, for all $x \in X$:

$$\sum_{j \in J} d^k_j x^*_j \geq \sum_{j \in J} d^k_j x_j$$

Consequently d^k is an optimal solution of IKP-∞ and the theorem is proved. \hfill \Box

As a corollary of the theorem, an optimal solution of IKP-∞ can be built on the basis of the distance between vectors c and d^*. Therefore, IKP-∞ can be reduced to find the L_∞ distance between d^* and c, which is easy to compute since it is given by the minimal value of k where x^0 is an optimal solution with respect to d^k. In order to reduce the research domain, an upper bound on the distance is provided in the following lemma.

Lemma 2.2.4. Let $D_\infty \in \mathbb{N}_0$ denote the optimal solution value of IKP-∞:

$$D_\infty = \min_{d \in \mathbb{N}_0} \max_{j \in J}\{|c_j - d_j|\}$$

subject to: $d^T x^* = d^T x^0$

$$x^* \in \text{arg max}\{d^T x : x \in X\}$$

Then, $D_\infty \leq C = \max_{j \in J}\{(1 - x^0_j)c_j\}$
Therefore, the value of k can be increased without altering the optimality of x^0 with respect to vector d^k. This is expressed in Theorem 2.2.5.

Theorem 2.2.5. If d^k satisfies $d^k x^0 = \max \{d^k x : x \in X\}$, then for all $k' \in \mathbb{N}_0$, with $k' > k$, one obtains $d^{k'} x^0 > d^{k'} x^0$. This can be written as follows:

$$
\sum_{j \in J^0} d^k_j x_j + \sum_{j \in J^1} d^k_j x_j > \sum_{j \in J^0} d^{k'}_j x_j^0
$$

Based the definition of d^k, one obtains:

$$
\sum_{j \in J^0} (d^k_j - \alpha_j) x_j + \sum_{j \in J^1} (d^k_j + \alpha_j) x_j > \sum_{j \in J^1} (d^{k'}_j + \alpha_j)
$$

where $\alpha_j = |d^k_j - d^0_j|$, for all $j \in J$. Consequently,

$$
\sum_{j \in J} d^k_j x_j > \sum_{j \in J} d^{k'}_j x_j^0 + \sum_{j \in J^0} x_j \alpha_j + \sum_{j \in J^1} (1 - x_j) \alpha_j.
$$

Therefore $d^{k'} x > d^{k'} x^0$, thus contradicting the hypothesis on d^k. This concludes the proof.

As with many combinatorial optimization problems, an important issue is to analyze the complexity of the IKP-∞ problem. We shall start by defining the corresponding decision problem.

The Inverse $\{0,1\}$-Knapsack Decision Problem under L_∞ (IKDP-∞)

INSTANCE: An instance (X, c) of KP, a feasible solution $x^0 \in X$ and a $k \in \mathbb{N}_0$.

QUESTION: Is there a vector $d \in \mathbb{N}_0^n$ such that $\max_{j \in J} \{|c_j - d_j|\} \leq k$, $d^T x^* = d^T x^0$ and $x^* \in \arg \max \{d^T x : x \in X\}$?

The IKP-∞ can be solved by using a binary search for the optimal solution value through a certain number of calls to IKDP-∞. **Sketch of the algorithm.** Based on Lemma 2.2.4, it is known that the optimal solution value must be between $a \leftarrow 0$ and $b \leftarrow C$. Call IKDP-∞ with $k \leftarrow \lfloor (a + b)/2 \rfloor$. If the answer is “Yes”, set $b \leftarrow k$; otherwise, set $a \leftarrow k + 1$, and repeat the process. When $a = b$, the optimal solution value is obtained.
The number of calls to IKDP-∞ is bound from above by \(\log_2 C \), which is polynomial in input length. Furthermore, based on Theorem 2.2.3, it is also known that the optimal solution of IKP-∞ can be computed in polynomial time based on the optimal solution value of IKDP-∞. Therefore, if IKDP-∞ can be solved in polynomial time, then IKP-∞ can also be solved in polynomial time.

Theorem 2.2.6. IKDP-∞ is co-NP-Complete.

Proof. To prove the Theorem, let us introduce the decision problem IKDP-∞.

IKDP-∞

INSTANCE: An instance \((X,c)\) of KP, a feasible solution \(x^0 \in X\) and a \(k \in \mathbb{N}_0\).

QUESTION: Is there a feasible solution \(x \in X\) such that \(d^kT x > d^kT x^0\)?

Let us prove the NP-Completeness of this decision problem. It is easy to see that IKDP-∞ belongs to NP, since a nondeterministic Turing machine need only guess a subset of \(J\) represented by an incidence vector \(x\) and check in polynomial time that \(x \in X\) and \(d^kT x > d^kT x^0\).

Consider the \(\{0,1\}\)-Knapsack decision problem stated as follows:

The \(\{0,1\}\)-Knapsack Decision Problem (KDP)

INSTANCE: An instance \((X,c)\) of KP and a \(t \in \mathbb{N}_0\).

QUESTION: Is there an \(x \in X\) with \(c^T x \geq t\)?

The NP-Hardness of IKDP-∞ is provided by a polynomial time reduction from KDP to IKDP-∞. An instance of KDP is transformed into an instance of IKDP-∞ by adding an item to the set \(J\), with \(c_{n+1} = t - 1, w_{n+1} = W, x^0_j = 0\), for \(j = 1, \ldots, n\), \(x^0_{n+1} = 1\), and \(k = 0\). It is easy to see that the reduction is polynomial. The correctness of this reduction is proved in what follows. For any given “Yes” instance of KDP, there exists an \(x \in X\) such that \(c^T x \geq t\). Therefore, in the corresponding instance of IKDP-∞, there exists an \(x \in X\) such that \(d^kT x > d^kT x^0\). For any given “No” instance of KDP, \(c^T x < t\) for all \(x \in X\). Therefore, in the corresponding instance of IKDP-∞, there is no \(x \in X\) such that \(d^kT x > d^kT x^0\). This proves the reduction. Thus, IKDP-∞ is NP-Complete.

Next, let us prove that IKDP-∞ is the complement of IKDP-∞. Any “Yes” instance of IKDP-∞ is a “No” instance of IKDP-∞. This is deduced from Theorems 2.2.3 and 2.2.5. By the definition of \(d^k\), any “No” instance of IKDP-∞ is a “Yes” instance of IKDP-∞. The complement of an NP-Complete problem is co-NP-Complete (see, for example, Garey and Johnson (1979)). Consequently, IKP-∞ is a co-NP-Complete problem and the theorem is proved.

\[\square\]

As a corollary of this Theorem, finding a polynomial time algorithm for solving IKP-∞ is more than unlikely. However, a pseudo-polynomial time algorithm is provided in what follows, which implies that IKP-∞ is fortunately a weakly co-NP-Complete problem.
2.2.3 A Pseudo-polynomial Time Algorithm

A pseudo-polynomial time algorithm for computing an optimal solution of IKP-∞ is proposed in this section. Thanks to Lemma 2.2.4, it is known that the distance between vectors d^* and c is bound from above by $C = \max_{j \in J} \{(1 - x_0^j)c_j\}$. The algorithm consists of finding the minimal value $k \in \{0, 1, \ldots, C\}$, so that x^0 is an optimal solution of the knapsack problem (X, d^k).

Sketch of the algorithm. Start with $k \leftarrow 0$. Compute a profit vector d^k. If the knapsack problem with d^k provides an optimal solution x^* such that $d^kT x^* = d^kT x^0$, then stop. Set $d^* \leftarrow d^k$. Otherwise, repeat the previous step with $k \leftarrow k + 1$.

The following pseudo-polynomial time algorithm (see Algorithm 1 for the pseudo-code) can be established with this procedure. It makes use of a solver denoted by $KP(X, c)$, which gives the optimal solution value of the knapsack problem (X, c).

Algorithm 1 Compute an optimal solution d^* of IKP-∞.

1: $C \leftarrow \max_{j \in J} \{(1 - x_0^j)c_j\}$;
2: OPT $\leftarrow KP(X, c)$;
3: for all $(k = 1$ to C) and $(OPT > d^kT x^0)$ do
4: for all $(j = 1$ to $n)$ do
5: if $(x_0^j = 0)$ then
6: $d_j^k \leftarrow \max\{0, c_j - k\}$;
7: else if $(x_0^j = 1)$ then
8: $d_j^k \leftarrow c_j + k$;
9: end if
10: end for
11: OPT $\leftarrow KP(X, d^k)$;
12: end for
13: $d^* \leftarrow d^k$;

Theorem 2.2.7. Algorithm (1) determines a vector $d^* \in \mathbb{N}^n_0$ that is an optimal solution of IKP-∞.

Proof. Directly deduced from Lemma 2.2.4 and Theorem 2.2.3.

Theorem 2.2.8. Algorithm (1) runs in $O(nWC)$.

Proof. The first loop (line 3) runs at most C times. The loop has two parts: a second loop (line 4) and a call to the knapsack solver KP (line 11). The second loop runs in $O(n)$ and the call to the knapsack solver runs in $O(nW)$ by using a dynamic programming approach (see, for example, Kellerer et al. (1994)). Therefore, these two parts run in $O(nW)$ and the whole algorithm runs in $O(nWC)$. Due to the call to the knapsack solver and C (that can be exponential in input size), we have a pseudo-polynomial time algorithm.

\square
The running time complexity of this approach can be reduced to $O(nW \log C)$ by using a binary search. Sketch of the algorithm. Based on Lemma 2.2.4, it is known that the optimal solution must be between $a \leftarrow 0$ and $b \leftarrow C$. Build a vector d as stated in Theorem 2.2.3 by using the distance $k \leftarrow a + \lfloor (b - a)/2 \rfloor$. If x^0 is an optimal solution for the resulting vector, set $b \leftarrow k$; otherwise, set $a \leftarrow k + 1$ and repeat the process. When $a = b$, the optimal solution is obtained. See Algorithm 2 for a pseudo-code of this procedure. Finally, note that the correctness of the algorithm relies on Theorem 2.2.5, which expresses that the value of k can be increased without altering the optimality of x^0 with respect to vector d^k.

Algorithm 2 Compute an optimal solution d^* of IKP-∞.

1: $a \leftarrow 0$;
2: $b \leftarrow C$;
3: while $a \neq b$ do
4: $k \leftarrow a + \lfloor (b - a)/2 \rfloor$;
5: for all $(j = 1$ to $n)$ do
6: if $(x^0_j = 0)$ then
7: $d^k_j \leftarrow \max\{0, c_j - k\}$;
8: else if $(x^0_j = 1)$ then
9: $d^k_j \leftarrow c_j + k$;
10: end if
11: end for
12: OPT $\leftarrow KP(X, d^k)$;
13: if $OPT = d^k^T x^0$ then
14: $b \leftarrow k$;
15: else
16: $a \leftarrow k + 1$;
17: end if
18: end while
19: $d^* \leftarrow d^k$;

2.3 The Inverse \{0,1\}-Knapsack Problem under L_1

This section deals with the problem and several theoretical results, which lead to designing an integer linear programming model for solving the inverse \{0, 1\}-knapsack problem under the L_1 distance. To our best knowledge, this is the first formulation that solves all the problem instances with a pseudo-polynomial number of variables and constraints. Indeed, the pseudo-polynomial algorithm proposed by Huang (2005) solves only a small set of instances and the integer linear programming formulation of Schaefer (2009) suggested to solve inverse integer programming problems is defined by an exponential number of constraints.
2.3.1 Problem Definition

Let \(x^0 \in X \) denote a feasible solution. Consider the \(L_1 \) distance between two vectors \(c \) and \(d \), i.e., \(|c_1 - d_1| + |c_2 - d_2| + \ldots + |c_j - d_j| + \ldots + |c_n - d_n|\). The \(L_1 \) inverse \(\{0,1\}\)-knapsack problem (IKP-1) can be stated as follows:

\[
\begin{align*}
\min & \quad \sum_{j \in J} |c_j - d_j| \\
\text{subject to:} & \quad d^T x^* = d^T x^0 \\
& \quad x^* \in \arg \max \{d^T x : x \in X\} \\
& \quad d \in \mathbb{N}_0^n \tag{IKP-1}
\end{align*}
\]

IKP-1 is a bilevel optimization problem that determines a profit vector \(d^* \in \mathbb{N}_0^n \), which minimizes the \(L_1 \) distance with respect to \(c \) and such that \(x^0 \) is an optimal solution of the modified knapsack problem \((X, d^*)\).

2.3.2 Some Theoretical Results

We shall start by introducing a lower bound on the \(L_1 \) distance between vectors \(c \) and \(d^* \) inspired on the upper bound proposed by Ahuja and Orlin (2002) for the shortest path problem.

Lemma 2.3.1. Let \(d^* \) denote an optimal profit vector for IKP-1, \(x^0 \) an optimal solution for \((X, d^*)\) and \(x' \in X \). Then, a lower bound on the optimal solution value of IKP-1 is given by

\[
||d^* - c||_1 = \sum_{j \in J} |d^*_j - c_j| \geq (c^T x' - c^T x^0)
\]

Proof.

\[
||d^* - c||_1 \geq (d^{*T} - c^T)(x^0 - x')
= d^{*T}x^0 - d^{*T}x' - c^T x^0 + c^T x'
= (d^{*T}x^0 - d^{*T}x') + (c^T x' - c^T x^0)
\geq (c^T x' - c^T x^0),
\]

where the first inequality holds because both \(x^0 \) and \(x' \) are 0-1 vectors and the second inequality results from \(d^{*T}x^0 \geq d^{*T}x' \). This concludes the proof.

This lower bound cannot be reached for all the inverse \(L_1 \) knapsack instances. Let us illustrate this point with two examples. Consider the following knapsack instance:

\[
\begin{align*}
\max & \quad f(x) = 4x_1 + 5x_2 + 6x_3 \\
\text{subject to:} & \quad x_1 + x_2 + x_3 \leq 1 \\
& \quad x_1, x_2, x_3 \in \{0, 1\}.
\end{align*}
\]
where \(x^* = (0,0,1) \) is an optimal solution. If the feasible solution \(x^0 = (1,0,0) \) is chosen, then \((c^T x^* - c^T x^0) = 2 \) is obtained. It is easy to see that \(d^* = (6,5,6) \) with \(\|d^* - c\|_1 = 2 = (c^T x^* - c^T x^0) \).

The following counter example shows this negative result:

\[
\begin{align*}
\max & \quad f(x) = x_1 + x_2 + x_3 \\
\text{subject to:} & \quad x_1 + x_2 + x_3 \leq 1 \\
& \quad x_1, x_2, x_3 \in \{0,1\}
\end{align*}
\]

If \(x^0 = (0,0,0) \) is considered, then \((c^T x^* - c^T x^0) = 1 \) is obtained. However, it is easy to see that the optimal solution of the IKP-1 must be \(d^* = (0,0,0) \) with \(\|d^* - c\|_1 = 3 \). Consequently, the lower bound cannot be reached for all instances.

This leads us to the following lemma, which provides an upper bound on the optimal solution value of IKP-1.

Lemma 2.3.2. Let \(D_1 \in \mathbb{N}_0 \) denote the optimal solution value of IKP-1:

\[
D_1 = \min \sum_{j \in J} |c_j - d_j|
\begin{align*}
\text{subject to:} & \quad d^T x^* = d^T x^0 \\
& \quad x^* \in \arg \max \{d^T x : x \in X\}
\end{align*}
\]

Then, \(D_1 \leq \sum_{j \in J} (1 - x^0_j)c_j \).

Proof. Proved by using the same arguments as in Lemma 2.2.4.

Let us analyze the complexity of IKP-1. We shall start by defining the corresponding decision problem.

The Inverse \{0,1\}-Knapsack Decision Problem under \(L_1 \) (IKDP-1)

INSTANCE: An instance of the \{0,1\}-knapsack problem \((X,c)\), a feasible solution \(x^0 \in X \) and a \(k \in \mathbb{N}_0 \).

QUESTION: Is there a vector \(d \in \mathbb{N}_0^n \) so that, \(\sum_{j \in J} |c_j - d_j| \leq k \), \(d^T x^* = d^T x^0 \) and \(x^* \in \arg \max \{d^T x : x \in X\} \) ?

For the same reasons as in IKP-\(\infty \), the IKP-1 can be solved by using a binary search for the optimal solution value through a certain number of calls to IKDP-1.

Theorem 2.3.3. IKDP-1 is co-NP-Hard

Proof. Consider the complement of the \{0,1\}-Knapsack decision problem denoted by KDP that is stated below.

INSTANCE: An instance of the \{0,1\}-knapsack problem \((X,c)\) and a \(t \in \mathbb{N}_0 \).

QUESTION: Is the condition \(\sum_{j \in J} x_j c_j < t \) fulfilled for all \(x \in X \) ?
It is easy to see that \overline{KDP} is the complement of KDP. Thus, by the NP-Completeness of KDP, one obtains that \overline{KDP} is co-NP-Complete. The co-NP-Hardness of IKDP-1 is provided by a polynomial time reduction from \overline{KDP} to IKDP-1. An instance of \overline{KDP} is transformed into an instance of IKDP-1 by adding an item to the set J, with $c_{n+1} = t - 1$, $w_{n+1} = W$, $x_0 = 0$ for $j = 1, \ldots, n$, $x_{n+1} = 1$, and $k = 0$. The correctness of this reduction is as follows. For any given “Yes” instance of \overline{KDP}, for all $x \in X$ one obtains $\sum_{j \in J} x_j c_j < t$. Therefore, in the corresponding IKDP-1 instance the conditions $d^T x^* = d^T x_0$ and $x^* \in \arg \max \{d^T x : x \in X\}$ are satisfied. For any “No” instance of KDP, there exists an $x \in X$ such that $\sum_{j \in J} x_j c_j \geq t$. Therefore, in the corresponding IKDP-1 instance the conditions $d^T x^* = d^T x_0$ and $x^* \in \arg \max \{d^T x : x \in X\}$ are not satisfied because $d^T x_0 = t - 1$ and by hypothesis, there exists an $x \in X$ such that $d^T x = t$. Consequently, IKDP-1 is co-NP-Hard and the theorem is proved.

However, IKDP-1 has not be proved to belong to co-NP because the knapsack problem is required for building a certificate for the “No” instances. Indeed, IKDP-1 can be solved by an oracle Turing machine \mathbf{NP}^{KDP} as proven below.

Theorem 2.3.4. IKDP-1 belongs to \mathbf{NP}^{KDP}

Proof. A nondeterministic polynomial time oracle Turing machine with KDP oracle can check whether $d \in \mathbb{N}_0^i$ satisfies the conditions $\sum_{j \in J} |c_j - d_j| \leq k$, $d^T x^* = d^T x_0$, and $x^* \in \arg \max \{d^T x : x \in X\}$. The nondeterministic machine guesses vector d. Then, the first condition is checked in polynomial time and the two last are checked by using the KDP oracle.

From this complexity analysis, one can conclude that the problem should be harder to solve than IKP-∞ and that there is less hope of finding a pseudo-polynomial time algorithm to solve it. This is why the use of integer linear programing and bilevel integer linear programing models are investigated in the remaining of this paper.

2.3.3 An Integer Linear Programming Formulation

An integer linear program for computing d^* is proposed here. Let us recall the classical dynamic programming approach for a given instance (X, d) of the \{0,1\}-Knapsack problem. Let $g_i(q)$ denote the maximum profit achievable when considering the first i items of J, with $i \in J$ and a capacity $q \in \{0, 1, \ldots, W\}$. The value of $g_i(q)$ can be determined through the following linear $\{0, 1\}$ model.

$$
g_i(q) = \max \sum_{j=1}^{i} d_j x_j \\
\text{subject to: } \sum_{j=1}^{i} w_j x_j \leq q \\
x_j \in \{0, 1\}, j \in \{1, \ldots, i\}
$$
Note that the original knapsack problem is to find \(g_n(W) \). It is widely known that the following recursive formula solves the knapsack problem (see for example Kellerer et al. 1994).

\[
\begin{cases}
g_i(q) = g_{i-1}(q), & \text{if } q < w_i, \\
\max \{ g_{i-1}(q - w_i) + d_i, g_{i-1}(q) \}, & \text{if } q \geq w_i.
\end{cases}
\]

with \(g_1(q) \leftarrow 0 \) for \(q = 0, 1, \ldots, w_1 - 1 \) and \(g_1(q) \leftarrow d_1 \) for \(q = w_1, w_1 + 1, \ldots, W \). This approach can be modeled as an integer linear program. Consider the following set of constraints denoted by (2.2).

\[
\begin{aligned}
g_1(q) &\geq 0, \quad \text{for all } q = 0, 1, \ldots, w_1 - 1, \\
g_1(q) &= d_1, \quad \text{for all } q = w_1, w_1 + 1, \ldots, W; \\
g_i(q) &= g_{i-1}(q), \quad \text{for all } q = 0, 1, \ldots, w_i - 1, \text{ and } i \in \{ j \in J : j \geq 2 \}, \\
g_i(q) &\geq g_{i-1}(q), \quad \text{for all } q = w_i, 1, \ldots, W, \text{ and } i \in \{ j \in J : j \geq 2 \}, \\
g_i(q) &\geq g_{i-1}(q - w_i) + d_i, \quad \text{for all } q = w_i, w_i + 1, \ldots, W, \text{ and } i \in \{ j \in J : j \geq 2 \}.
\end{aligned}
\] (2.2)

By minimizing \(g_n(W) \) over this set of constraints, it is easy to see that one obtains the optimal value of the knapsack problem. Consider the following integer linear programming model (Problem 2.3).

\[
\begin{aligned}
\min \quad & \sum_{j \in J} \delta_j \\
\text{subject to:} & \quad \delta_j \geq d_j - c_j, \quad j \in J \\
& \quad \delta_j \geq c_j - d_j, \quad j \in J \\
& \quad \sum_{j \in J} d_j x_0^j \geq g_n(W) \\
& \quad \text{The set of constraints (2.2) on } g_n(W) \\
& \quad d \in \mathbb{N}_0^n \\
& \quad \delta_j \in \mathbb{N}_0, \quad j \in J
\end{aligned}
\] (2.3)

Similar to the dynamic programming algorithm for the knapsack problem, this integer program can be built with an algorithm that runs in \(O(nW) \).

Let us establish the exactness of this formulation for solving IKP-1. The following lemma expresses that \(x^0 \) is an optimal solution for all vectors \(d \in \mathbb{N}_0^n \) satisfying the set of constraints described in Problem 2.3.

Lemma 2.3.5. For all vectors \(d \in \mathbb{N}_0^n \) satisfying the set of constraints described in Problem 2.3, \(d^T x^0 = \max \{ d^T x : x \in X \} \).

Proof. By definition, \(g_n(W) \geq \max \{ d^T x : x \in X \} \) and the set of constraints implies \(d^T x^0 \geq g_n(W) \). Then,

\[
d^T x^0 \geq g_n(W) \geq \max \{ d^T x : x \in X \} \geq d^T x^0,
\]

where the last inequality results from the fact that \(x^0 \in X \). This concludes the proof. \(\square \)
CHAPTER 2. THE INVERSE \{0,1\}-KNAPSACK PROBLEM

It is important to prove that all vectors leading to the optimality of \(x^0\) satisfy the set of constraints described in Problem 2.3. This is established by the following lemma.

Lemma 2.3.6. For all vectors \(d \in \mathbb{N}_0^n\) with \(d^T x^0 = \max\{d^T x : x \in X\}\), there exists a \(g_n(W) \in \mathbb{N}_0\) such that \(\sum_{j \in J} d_j x_j^0 \geq g_n(W)\).

Proof. For all vectors \(d \in \mathbb{N}_0^n\) with \(d^T x^0 = \max\{d^T x : x \in X\}\), one can build a \(g_n(W) \in \mathbb{N}_0\) such that \(\sum_{j \in J} d_j x_j^0 \geq g_n(W)\). This results from the definition of \(g_n(W)\). □

Theorem 2.3.7. Problem 2.3 determines a vector \(d^* \in \mathbb{N}^0\) with \(d^{*T} x^0 = \max\{d^{*T} x : x \in X\}\) and such that there is no \(d' \in \mathbb{N}^0\) with \(\sum_{j \in J} |c_j - d_j'| < \sum_{j \in J} |c_j - d^*_j|\) and \(d' x^0 = \max\{d' x : x \in X\}\).

Proof. This directly results from Lemmas 2.3.5 and 2.3.6. □

This establishes the exactness of this formulation for solving IKP-1.

If the integrality constraint on vector \(d\) is removed, the integer program (2.3) becomes a linear programming model. Then, Problem 2.3 can be solved through a pseudopolynomial time algorithm. Indeed, it is known that Karmarkar’s algorithm for solving linear programming runs in \(O(n^{3.5} L)\), where \(n\) denotes the number of variables and \(L\) the number of bits in the input (Karmarkar 1984). Problem 2.3 is composed of \(O(nW)\) variables. Therefore, one can build an algorithm for computing \(d^* \in \mathbb{R}^n\) that runs in \(O((nW)^{3.5} \log(nW))\). Of course, this is a theoretical result and Karmarkar’s algorithm should be replaced in practice by the simplex algorithm.

2.4 A Bilevel Programming Approach

Since the inverse \{0,1\}-knapsack can be defined as a bilevel problem, a natural approach for solving this problem is to consider bilevel programming techniques. This section presents how these techniques can be applied to the inverse \{0,1\}-knapsack under the \(L_\infty\) norm. However, it is easy to extend this approach to the \(L_1\) norm.

2.4.1 Linearization of the Inverse \{0,1\}-Knapsack Problem

This section deals with the linearization of the bilevel problem IKP-\(\infty\). We shall start by introducing a variable \(\delta \in \mathbb{R}\) to remove the maximization operator. The problem can be stated as follows:

\[
\begin{align*}
\min & \quad \delta \\
\text{subject to:} & \quad \delta \geq c_j - d_j, \quad j \in J \\
& \quad \delta \geq d_j - c_j, \quad j \in J \\
& \quad d^{T} x^* = d^{T} x^0 \\
& \quad x^* \in \arg \max \{d^T x : x \in X\} \\
& \quad d \in \mathbb{N}_0^n \\
& \quad \delta \in \mathbb{R}
\end{align*}
\]
The non-linear vector product $d^T x^*$ can be replaced by a sum of n real-valued variables. Create n new variables $e_j \in \mathbb{R}_+$ with $j \in J$ that are equal either to zero or bounded from above by d_j. This is expressed by the following constraints for each variable e_j with $j \in J$.

$$
\begin{cases}
 e_j \leq d_j, \\
 e_j \leq x_j M.
\end{cases}
$$

where M is the upper bound on the value of d_j^*, with $j \in J$. This upper bound is provided in the following lemma.

Lemma 2.4.1. If d^* is an optimal solution of IKP-1, then for all $j \in J$, $d_j \leq M = 2 \max_{j \in J} \{c_j\}$.

Proof. Assume there exists an $i \in J$, such that $d_i^* > 2 \max_{j \in J} \{(1 - x_0^j)c_j\}$. Therefore, $\max_{j \in J} \{|c_j - d_j^*|\} > \max_{j \in J} \{(1 - x_0^j)c_j\}$, which contradicts Lemma 2.2.4, and this lemma is proved. \qed

Finally, replace $d^T x$ with $\sum_{j \in J} e_j$. The resulting bilevel integer linear programming version of the inverse $\{0,1\}$-knapsack problem under the L_∞ norm can be stated as follows:

$$
\begin{align*}
\min & \quad \delta \\
\text{subject to:} & \quad \delta \geq d_j - c_j, \; j \in J \\
& \quad \delta \geq c_j - d_j, \; j \in J \\
& \quad \sum_{j \in J} e_j^* = d^T x^0 \\
& \quad d \in \mathbb{N}_0^n \\
& \quad \delta \in \mathbb{R} \\
& \quad e^* \in \arg \max \sum_{j \in J} e_j \quad \text{subject to:} \\
& \quad e_j \leq d_j, \; j \in J \\
& \quad e_j \leq x_j M, \; j \in J \\
& \quad e \in \mathbb{R}_+^n \\
& \quad x \in X
\end{align*}
$$

(2.4)

Now, let us prove the correctness of this formulation. Consider the two following lemmas establishing the optimality of e^*, that is $\sum_{j \in J} e_j^* = \max \{d^T x : x \in X\}$.

Lemma 2.4.2. If $e \in \mathbb{R}_+^n$ and $x \in X$ denote a feasible solution of the lower-level problem of the bilevel optimization problem (2.4), then $\sum_{j \in J} e_j \leq \sum_{j \in J} x_j d_j$.

Proof. The two following relations between $e \in \mathbb{R}_+^n$ and $x \in X$ are directly deduced from the set of constraints of the lower-level problem.

$$
\begin{cases}
 (e_j > 0) \Rightarrow (x_j = 1), \\
 (e_j = 0) \Rightarrow (x_j = 1) \lor (x_j = 0).
\end{cases}
$$
Due to the set of constraints of the lower-level problem, one obtains $e_j \leq d_j$. Therefore, $e_j \leq x_j d_j$ for all $j \in J$, which implies $\sum_{j \in J} e_j \leq \sum_{j \in J} x_j d_j$. This concludes the proof. \hfill \Box

Lemma 2.4.3. For all feasible solutions $x \in X$, there exists a vector $e \in \mathbb{R}^n_+$ satisfying the set of constraints of the lower-level problem of the bilevel optimization problem (2.4) and such that $\sum_{j \in J} e_j = \sum_{j \in J} x_j d_j$.

Proof. Define the vector $e \in \mathbb{R}^n_+$ as follows. For all $j \in J$:

\[
\begin{cases}
 e_j = d_j, & \text{if } x_j = 1, \\
 e_j = 0, & \text{otherwise}.
\end{cases}
\]

this implies that $\sum_{j \in J} e_j = \sum_{j \in J} x_j d_j$. Furthermore, it is easy to see that vector e satisfies the set of constraints. This concludes the proof. \hfill \Box

Theorem 2.4.4. Let $e^* \in \mathbb{R}^n_+$ denote an optimal solution of the lower level problem of the bilevel optimization problem (2.4). Then, $\sum_{j \in J} e^*_j = \max\{d^T x : x \in X\}$.

Proof. This results directly from Lemmas 2.4.2 and 2.4.3. \hfill \Box

2.4.2 Analysis of the Bilevel Integer Linear Programming Problem

Consider the use of bilevel integer linear programming for solving IKP-\(\infty\). The existing methods for solving bilevel integer linear programming problems do not allow to have constraints on variables e_j in the upper level problem (Moore and Bard 1990, DeNegre and Ralphs 2009). However, this can be easily tackled by inserting the constraint $\sum_{j \in J} e_j = d^T x^0$ into the objective function. With $L = C + 1$, the following equivalent problem is obtained.

\[
\begin{align*}
\min & \quad \delta + \left(\sum_{j \in J} e_j - d^T x^0 \right) L \\
\text{subject to:} & \quad \delta \geq d_j - c_j, \quad j \in J \\
& \quad \delta \geq c_j - d_j, \quad j \in J \\
& \quad d \in \mathbb{N}^n \\
& \quad \delta \in \mathbb{R} \\
& \quad e \in \arg \max \sum_{j \in J} e_j \\
& \quad \text{subject to:} \quad e_j \leq d_j, \quad j \in J \\
& \quad e_j \leq x_j M, \quad j \in J \\
& \quad e \in \mathbb{R}^n_+ \\
& \quad x \in X
\end{align*}
\]

(2.5)

Based on Lemma 2.2.4, it is known that $\delta \leq C$. Therefore, a solution of Problem (2.5) with $d^T x^0 < \sum_{j \in J} e_j$ is not an optimum, because in this case, $\delta + \left(\sum_{j \in J} e_j - d^T x^0 \right) L \geq L > C$.

This integer bilevel linear programming problem can be solved by a branch-and-cut algorithm (DeNegre and Ralphs 2009) or by a branch-and-bound algorithm (Moore and Bard 1990).

2.5 Computational Experiments

The purpose of this section is to report the behavior of Algorithm 1, Algorithm 2 and the integer programming model of Problem (2.3) on several sets of randomly generated instances. This helps compare the approaches proposed in this paper and measure their practical application in terms of performance. The design of the experiments is inspired by the frameworks used in Martello and Toth (1990) and in Pisinger (1995).

2.5.1 Design of the Experiments

For a better understanding of how the methods behave, several groups of randomly generated instances of the \{0,1\}-knapsack problem were considered. For a given number of variables \(n\) and data range \(R\), instances were randomly generated in three different ways:

- **Uncorrelated instances** where \(c_j\) and \(w_j\) are randomly distributed in \([1, R]\);
- **Weakly correlated instances** where \(w_j\) is randomly distributed in \([1, R]\) and \(c_j\) is randomly distributed in \([w_j - R/10, w_j + R/10]\) such that \(c_j \geq 1\);
- **Strongly correlated instances** where \(w_j\) is randomly distributed in \([1, R]\) and \(c_j = w_j + 10\).

The reader should refer to Kellerer et al. (1994) for more detailed information on the instances.

For each class of instance, three types of groups were constructed:

- **Type 1** where each instance \(i \in \{1, \ldots, S\}\) is generated with the seed number \(i\) and \(W\) is computed as the maximum between \(R\) and \(\lceil i/(S + 1) \sum_{j \in J} w_j \rceil\);
- **Type 2** where each instance \(i \in \{1, \ldots, S\}\) is generated with the seed number \(i\) and \(W\) is computed as the maximum between \(R\) and \(\lfloor P \sum_{j \in J} w_j \rfloor\), where \(P \in [0, 1]\);
- **Type 3** where each instance \(i \in \{1, \ldots, S\}\) is generated with the seed number \(i \cdot 10\) and \(W\) is computed as the maximum between \(R\) and \(\lfloor P \sum_{j \in J} w_j \rfloor\), where \(P \in [0, 1]\).

In the three cases, each instance is completed by a feasible solution \(x^0\) defined through the traditional greedy heuristic algorithm (see Kellerer et al. 1994). This provides a feasible solution that is sufficiently close to the optimal one. Two random generators were used to build these instances; the one used in the HP9000 - UNIX and the random function of the NETGEN generator (Klingman and Stutz 1974).
Groups of Type 1 were composed by \(S = 100 \) instances as proposed in Kellerer et al. (1994) and groups of Type 2 and 3 were composed by \(S = 30 \) instances. The choice of 30 is based on the rule of thumb in statistics to produce good estimates (Coffin and Saltzman 2000).

For each group of instance, the performance of the approaches were measured through the average (Avg.), standard deviation (Std. dev.), minimum (Min.) and maximum (Max.) of the CPU time in seconds.

Algorithms were implemented in the C++ programming language. Algorithms 1 and 2 integrate the algorithm for the \(\{0,1\} \)-knapsack problem proposed by Pisinger (1997) (The implementation of this algorithm is available at http://www.diku.dk/~pisinger/codes.html) and the integer linear program (2.3) is solved by using the CPLEX solver. All the experiments were performed on a multiple processors architecture composed of four 2.8 GHz AMD Opteron dual-core processors, 32GB of RAM, and running Linux as the operation system. This make it possible to take advantage of the parallel algorithms found in the CPLEX solver. A limit of 10 hours was assigned to each group of \(S \) instances. An excess time limit is represented by a dash in the tables.

2.5.2 Statistical Analysis

For the analysis of Algorithms 1 and 2, only strongly correlated instances are considered as they appear as being the hardest instances for the knapsack solver used in both algorithms. Furthermore, only the results on Type 2 instances generated by the HP-9000 UNIX random function are presented in this section as they give rise to the same conclusions as the other types of randomly generated instances.

Algorithm 2 is very efficient for large scale instances. For example, with \(n = 10^5 \), \(R = 10^4 \) and \(P = 0.5 \), the average computation time is 27.37 seconds with a 95% confidence interval [17.96, 36.79] obtained by using the Student’s t-Distribution with 29 degrees of freedom. The application of the binary search in Algorithm 2 is significant because with \(n = 10^4 \), \(R = 10^4 \) and \(P = 0.5 \), the average computation time of Algorithm 1 is 539.98 seconds with a 95% confidence interval given by [364.41, 715.54]. Let us point out that the performances of these algorithms are strongly linked to the embedded knapsack solver. Therefore, the use of another solver could either increase or decrease significantly the computation time.

Let us compare the performance of Algorithms 1 and 2 more precisely by computing the pairwise differences in running times defined by \(\Delta_i = \delta^1_i - \delta^2_i \), where \(\delta^1_i \) is the computation time of Algorithm 1 on the \(i \)-th instance and \(\delta^2_i \) is the computation time of Algorithm 2 on the same instance. Let \(M \) denote the median of the population of pairwise differences. Then \(M > 0 \) implies that Algorithm 1 is likely to take longer, whereas \(M < 0 \) implies that Algorithm 2 takes longer. To compare the two algorithms the test is \(H_0 : M = 0 \) versus \(H_a : M \neq 0 \) (see, for example, Coffin and Saltzman 2000, for more details).

Consider a population of 30 strongly correlated instances with \(n = 10^4 \), \(R = 10^4 \), and \(P = 0.5 \). By the use of the sign test with a significance level \(\alpha = 0.05 \), hypothesis \(H_0 \) is rejected and one may conclude that the algorithms perform differently. A 95% confidence
interval for M (based on the binomial distribution) is $[177.09, 767.81]$, indicating that Algorithm 1 should take between 177.09 and 767.81 seconds more than Algorithm 2 for solving the same instance. Consider also a population of 30 strongly correlated instances with $n = 10^3$, $R = 10^4$, and $P = 0.5$. Hypothesis H_0 is also rejected and a 95% confidence interval for M is $[9.19, 22.58]$. Finally, consider a population of 30 strongly correlated instances with $n = 10^3$, $R = 10^4$, and $P = 0.5$. Hypothesis H_0 is also rejected and a 95% confidence interval for M is $[0.1, 0.57]$.

A multiple regression model of running time can be used for an empirical analysis of average complexity (see, for example, Vanderbei 1996, Coffin and Saltzman 2000). Since the complexity of Algorithm 1 is $O(nWC)$, the running time can be modeled by $T = nWC$. This model is a log-linear one:

$$\log_e T = \log_e n + \log_e W + \log_e C + \epsilon.$$

Consider strongly correlated instances of Type 2 with $R = 10^4$, $n \in \{10^2, 5 \times 10^2, 10^3, 5 \times 10^3, 10^4, 5 \times 10^4, 10^5\}$ and $P \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$. For each couple (n, P), 30 instances were generated. The fitted regression model is obtained for this set by using the well-known least-squares method is as follows:

$$\log_e T \approx -1.721 + 0.553 \log_e n + 0.9185 \log_e W - 1.476 \log_e C.$$

The adjusted coefficient of multiple determination is 0.839. Consequently 83.9% of the variability of T is explained by the variables n, W and C. It is worth mentioning that influence of variables n, W and C can also be explained by the choice of the embedded knapsack solver.

The same can be done for Algorithm 2:

$$\log_e T \approx -94.430 + 3.557 \log_e n - 2.271 \log_e W + 39.583 \log_e \log_2 C.$$

The adjusted coefficient of multiple determination is 0.94. Here the influence of $\log_2 C$ is very important, because the main loop runs exactly $\log_2 C$ times and at each iteration the instance is strongly modified therefore influencing the performance of the knapsack solver.

For the experiments on the integer linear programming formulation for solving IKP-1 we shall also present the results for the uncorrelated instances because of the hardness of this problem.

When considering small uncorrelated instances, the inverse problem can be solved with a reasonable computation time. For example, with $n = 50$, $R = 500$, and $P = 0.5$, the average computation time is 79.41 seconds with a 95% confidence interval $[50.95, 107.88]$. However, by the nature of the formulation, the computation time becomes quickly unreasonable. For example, with $n = 80$, $R = 500$, and $P = 0.5$, the average computation time is 744.64 seconds with a 95% confidence interval $[430.58, 1058.71]$.

The use of strongly correlated instances has a strong impact on the performance. For example, with $n = 50$, $R = 100$, and $P = 0.5$, the average computation time for the strongly correlated instances is 209.38 seconds with a 95% confidence interval
[150.09, 268.67], while for the uncorrelated instances the average computation time is 6.45 seconds with a 95% confidence interval [3.93, 8.97].

For more details on the results of the computational experiments, the reader may consult the Appendix.

2.6 Conclusion

In this chapter, the inverse knapsack problem has been defined and studied for both the L_∞ and L_1 norms. Complexity analysis has highlighted the theoretical hardness of both problems. Despite the hardness of IKP-∞, experimental results have shown the tractability of the computational procedure used for solving it. On the other hand, the method proposed here for solving IKP-1 can only handle small instances. However, this result is easily explained by the co-NP-Hardness of this problem. Therefore, the use of approximation algorithms should be considered in the future.

There are many possible extensions of this work. For instance, the use of other norms, the nature of the adjustment, and constraints on the adjustment are of obvious interest. Furthermore, this work clears the way for solving the inverse version of other optimization problems such as the multi-constraint knapsack problem and the integer knapsack problem. Indeed, some of the proposed approaches could be easily extended to these problems.
Chapter 3

Venues for future research in the field of Multi-Objective Optimization

In the previous chapter the inverse \{0,1\}-knapsack problem has been solved. However, this analysis do not take into account the very nature of all real-world decision making problems that are multi-dimensional and requiring thus the construction of a coherent set of objectives, that is a set of objectives that represent the properties of exhaustiveness, nonredundancy and cohesiveness, and that are generally in conflict with each other (Roy 1996). This is a prominent aspect in the real-world knapsack problems, such as in capital budgeting (Bhaskar 1979, Rosenblatt and Simuany-Stern 1989), for planning remediation of contaminated lightstation sites (Jenkins 2002), for selecting transportation investment (Teng and Tzeng 1996), and in relocation problems arising in conservation biology (Kostreva et al. 1999).

Therefore, our aim is to go a step further extending inverse optimization to multi-objective optimization. To the best of our knowledge this extension has only been mentioned by Ahuja and Orlin (2001), but has not yet been covered. The purpose of this chapter is to highlight future directions of research. First, definitions and concepts of this field are presented. Then, applications of inverse multi-objective optimization are reported. Finally, a taxonomy of inverse problems is introduced, thus highlighting a wide range of questions opened up by this new field of research.

3.1 Concepts, Definitions, and Notation

In order to deal with inverse multi-objective optimization, we will review some concepts, their definitions, and the basic notation used in multi-objective optimization (see, for example, Zeleny (1974), Steuer (1986), Ehrgott (2005)). Let us define a multi-objective linear optimization problem as a set \(\Pi \) of instances, where an instance consist of optimizing simultaneously a set of \(q \) objective functions on a feasible set \(X \). Without loss of
CHAPTER 3. VENUES FOR FUTURE RESEARCH

generality we assume that all the objectives have to be maximized.

Let \(q \geq 2 \) denote a number of objectives, \(A \in \mathbb{R}^{m \times n} \) a matrix, \(b \in \mathbb{R}^m \) a vector, \(X = \{ x \in \mathbb{R}^n : Ax \leq b \} \) a feasible set, and \(C \in \mathbb{R}^{q \times n} \) a profit matrix. For each solution \(x \in X \) consider the linear expression \(F(x) = Cx \) providing an outcome vector. A linear multi-objective optimization problem is a pair \((X, C)\) and it consists of solving the problem “max” \(\{ F(x) : x \in X \} \). Where the maximization operator is between cotation marks since there is not necessarily an outcome vector that maximize simultaneously all the objectives and that no natural total order exists on \(\mathbb{R}^q \) with \(q \geq 2 \).

In multi-objective optimization two spaces should be distinguished. The decision space is the space in which the feasible solutions are defined, and the objective space is the space in which the outcome vectors are defined. The image of the feasible set in the objective space is denoted by \(Y = \{ y \in \mathbb{R}^q : y = Cx, x \in X \} \).

Definition 3.1.2 (Ideal Vector). An outcome vector \(y^* \in Y \) is said to be ideal if and only if \(Y \subseteq \{ y^* \oplus \mathbb{R}_\leq^q \} \).

As explained in Definition 3.1.1, the maximization operator is between cotation marks since there is not necessarily an ideal outcome vector and that no natural total order exists on \(\mathbb{R}^q \) with \(q \geq 2 \). Consequently, it is widely accepted to build the dominance relation on the set \(Y \) of outcome vectors. This is a binary relation that is irreflexive, asymmetric, and transitive.

Definition 3.1.3 (Dominance). Let \(y, y' \in Y \) be two outcome vectors such that \(y \neq y' \). If \(y' \in \{ y \oplus \mathbb{R}_\leq^q \} \), then \(y \) dominates \(y' \).

The dominance relation induces a partition of \(Y \) into two subsets: the dominated outcome vectors set and the non-dominated outcome vectors set. An outcome vector \(y^* \in Y \) is non-dominated if there is no \(y \in Y \) such that \(y \) dominates \(y^* \).

Definition 3.1.4 (Non-dominated). Let \(y \in Y \) be an outcome vector. If \(\{ y \oplus \mathbb{R}_\leq^q \} \cap Y = \{ y \} \), then \(y \) is non-dominated.

Conversely, in the decision space the concepts of efficient and non-efficient solutions can be defined.

Definition 3.1.5 (Efficiency). A solution \(x^* \in X \) is efficient if and only if there is no \(x \in X \) such that \(Cx \geq Cx^* \).

Now, consider multi-objective linear \(\{0,1\} \)-combinatorial optimization problem as a set \(\Pi \) of instances.

Definition 3.1.6. (An instance of multi-objective linear \(\{0,1\} \)-combinatorial optimization problem) Let \(I = \{1,2,\ldots,i,\ldots,q\} \) denote the set of objective super-scripts, \(X \subseteq \{ x : x \in \{0,1\}^n \} \) a feasible set, \(J = \{1,2,\ldots,j,\ldots,n\} \) the set of element
subscripts, and $C \in \mathbb{R}^{q \times n}$ a matrix. For each solution $x \in X$, consider p linear expression $f^i(x) = \sum_{j \in J} c_j x_j$. A linear $\{0,1\}$-combinatorial optimization problem is a pair (X, C) and consists of solving “max” $\{F(x) = \{f^1(x), f^2(x), \ldots, f^i(x), \ldots, f^q(x)\} : x \in X\}$.

In such optimization problem, the non-dominated set is partitioned into two sets: the supported and the unsupported non-dominated outcome vectors sets, respectively.

Definition 3.1.7 (Supported non-dominated outcome vector). Let $y \in Y$ denote a non-dominated outcome vector. If y is on the boundary of $Y \subseteq = \text{Conv}(Y + \mathbb{R}^q \subseteq)$, then y is a supported non-dominated outcome vector. Otherwise, y is an unsupported non-dominated outcome vector.

Some methods for computing the non-dominated outcome vectors provide only extreme non-dominated outcome vector as output.

Definition 3.1.8 (Supported-extreme non-dominated outcome vector). Let $y \in Y$ denote a supported non-dominated outcome vector. If y is an extreme point of $Y \subseteq$, then y is a supported-extreme non-dominated outcome vector. Otherwise, y is a supported non-extreme non-dominated outcome vector.

3.2 Applications

Inverse multi-objective optimization raises particular applications for inverse optimization since there is usually no optimal solution for these problems but instead an set of efficient solutions. First, consider the following application drawn from portfolio analysis:

- **Investment Modeling:** Portfolios of investors can be evaluated through a set of criteria such that: risk, interest rates, dividends, etc. By their very nature, these performances of each portfolio on the set of criteria (say the parameters) are hard to evaluate. Furthermore, their values are perceived or evaluated differently by each investor. Recovering perceived and approximated parameters is an important step in the analysis of investors’ behavior. Indeed, one can build a model for this investment problem and evaluate the parameters. However, it is not enough to understand investors’ behaviour since the portfolios that are used by the investors are not necessarily efficient for this model.

Assume that some portfolios that are used by investors (and thus considered as the efficient ones) are also known. Therefore, one can incorporate this knowledge in the model by modifying the a priori profits so as to guarantee the efficiency of the portfolios in the modified model, and consequently get a model that fit the decision of the investors.

If one use a simplified model where all the objectives and constraints are linear, then this is an instance of the inverse multi-objective knapsack problem. Given an instance of the knapsack problem and a set of feasible solutions, the question is how to modify the profits as little as possible such that the given set of solutions become an efficient one.
The investment modeling problem can be formalized as follows. Let \(J = \{1, 2, \ldots, j, \ldots, n\} \) denotes a set of \(n \) goods, \(C \in \mathbb{R}^{q \times n} \) an approximated profit matrix, and \(W \in \mathbb{R} \) the investor’s budget. The efficient portfolios are given by the corresponding multi-objective \(\{0,1\} \)-knapsack problem \((X, C)\). Consider an investor’s portfolio denoted by the binary-valued feasible solution \(x^0 \in X \). The question is how to compute an adjusted profit matrix \(D^* \in \mathbb{R}^{q \times n} \) such that:

\[
D^* \in \arg \min D \gamma(C, D) \quad \text{subject to: } \{Dx^0 \oplus \mathbb{R}_\ge^q\} \cap Y = \{Dx^0\},
\]

where \(\gamma(C, D) \) measure the adjustment between the two profit matrices, and the constraint \(\{Dx^0 \oplus \mathbb{R}_\ge^q\} \cap Y = \{Dx^0\} \) ensures that \(x^0 \) is an efficient solution for problem \((X, D)\).

By expanding the scope of inverse optimization, a way to measure the robustness of an efficient solution can be defined. Consider what follows as a first attempt to measure robustness through inverse optimization.

- **Robustness Analysis:** Given an instance of a multi-objective optimization problem and an efficient solution. The problem is to measure the minimal adjustment of this instance such that the solution becomes non-efficient. The higher is this value, the more robust the solution is considered. Indeed, a high value means that the solution is still efficient even with a high value of uncertainty on the profits.

This problem can be formalized as follows. Given an instance of a multi-objective optimization problem \((X, C)\) and an efficient solution \(x^0 \in X \). The question is how to compute an adjusted profit matrix \(D^* \in \mathbb{R}^{q \times n} \) such that:

\[
D^* \in \arg \min D \gamma(C, D) \quad \text{subject to: } |\{Dx^0 \oplus \mathbb{R}_\ge^q\} \cap Y| \geq 2,
\]

where the constraint \(|\{Dx^0 \oplus \mathbb{R}_\ge^q\} \cap Y| \geq 2\) ensure that \(Dx^0 \) is dominated by at least on outcome vector.

3.3 A taxonomy of the inverse problems

Since an outcome vector can be either ideal, dominated, supported non-dominated, or non-supported non-dominated, the extension of inverse optimization to multi-objective optimization lead to ask more than one question. For example: How to determine a minimal adjustment of the profit matrix such that a given solution becomes an ideal solution? How to determine a minimal adjustment of the profit matrix such that a given solution becomes efficient? How to determine a minimal adjustment of the profit matrix such that a given efficient solution becomes dominated?
Therefore, in order to portray the possible path of research in inverse multi-objective optimization we have identified a preliminary and incomplete taxonomy that will be completed throughout the thesis. First, consider the possible input that could be considered. Given an instance \((X, C)\) of a multi-objective optimization problem \(\Pi\) we could consider three different sets of feasible solutions:

- Feasible solutions
- Efficient solutions
- Efficient solutions where the corresponding outcome vectors are:
 - Supported non-dominated
 - Supported-extreme non-dominated
 - Non-supported non-dominated

Then, the question is how to modify the instance as little as possible such that the given set of solutions becomes the whole set or a subset of:

- Feasible solutions
- Efficient solutions
- Efficient solutions where the corresponding outcome vectors are:
 - Ideal
 - A reference point
 - Supported non-dominated
 - Supported-extreme non-dominated
 - Non-supported non-dominated

Finally, this purpose could be reached by:

- Adjusting the profit values
- Adjusting the parameters defining the feasible set

Even though, some of these questions are up to now more theoretical than others, this highlight a wide range of path that could be followed in our ongoing work.
3.4 Thesis Schedule

Beside the teaching activities, my work for the forthcoming month will focus on the following points:

• Octobre 2010 :
 – Submitting a paper on Promethee with Céline Verly and Yves De Smet.
 – Building algorithms for the inverse bi-objective knapsack problem under L_1 and L_∞.

• December 2010 : Submitting a paper on the inverse bi-objective Knapsack problem.

• May 2011 : Submitting a paper on inverse multi-objective linear programming.

Moreover, we hope to present some part of this work in a conference such that INFORMS, IFORS, or Integer Programming and Combinatorial Optimization (IPCO).
Appendix A

Computational Results

Table A.1: Impact of varying the number of variables n and data range R on performance of Algorithm 2 with a group of strongly correlated instances of Type 2 and $P = 0.5$.

<table>
<thead>
<tr>
<th>n</th>
<th>$R = 1000$</th>
<th></th>
<th></th>
<th>$R = 5000$</th>
<th></th>
<th></th>
<th>$R = 10000$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>1000</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.06</td>
<td>0.05</td>
<td>0.01</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>5000</td>
<td>0.09</td>
<td>0.05</td>
<td>0.01</td>
<td>0.22</td>
<td>0.40</td>
<td>0.28</td>
<td>0.01</td>
<td>1.09</td>
<td>0.78</td>
</tr>
<tr>
<td>10000</td>
<td>0.23</td>
<td>0.16</td>
<td>0.02</td>
<td>0.51</td>
<td>1.07</td>
<td>0.74</td>
<td>0.31</td>
<td>2.72</td>
<td>2.35</td>
</tr>
<tr>
<td>50000</td>
<td>1.19</td>
<td>0.87</td>
<td>0.12</td>
<td>3.08</td>
<td>6.09</td>
<td>5.43</td>
<td>1.87</td>
<td>18.03</td>
<td>15.57</td>
</tr>
<tr>
<td>100000</td>
<td>2.76</td>
<td>2.15</td>
<td>0.25</td>
<td>7.22</td>
<td>12.65</td>
<td>11.97</td>
<td>2.20</td>
<td>41.87</td>
<td>27.26</td>
</tr>
</tbody>
</table>

Table A.2: Impact of varying the percentage P and data range R on performance of Algorithm 2 with a group of strongly correlated instances of Type 2 and $n = 10^5$.

<table>
<thead>
<tr>
<th>P</th>
<th>$R = 1000$</th>
<th></th>
<th></th>
<th>$R = 5000$</th>
<th></th>
<th></th>
<th>$R = 10000$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.42</td>
<td>0.02</td>
<td>0.29</td>
<td>3.10</td>
<td>12.97</td>
<td>4.09</td>
<td>0.26</td>
<td>18.07</td>
<td>30.97</td>
</tr>
<tr>
<td>0.2</td>
<td>2.62</td>
<td>0.84</td>
<td>0.24</td>
<td>3.94</td>
<td>16.42</td>
<td>3.30</td>
<td>9.79</td>
<td>21.51</td>
<td>34.69</td>
</tr>
<tr>
<td>0.3</td>
<td>2.14</td>
<td>0.94</td>
<td>0.27</td>
<td>4.34</td>
<td>14.46</td>
<td>4.81</td>
<td>0.30</td>
<td>24.41</td>
<td>31.85</td>
</tr>
<tr>
<td>0.4</td>
<td>2.25</td>
<td>0.89</td>
<td>1.29</td>
<td>4.63</td>
<td>13.42</td>
<td>6.47</td>
<td>6.44</td>
<td>29.80</td>
<td>33.68</td>
</tr>
<tr>
<td>0.5</td>
<td>2.76</td>
<td>2.15</td>
<td>0.25</td>
<td>7.22</td>
<td>12.65</td>
<td>11.97</td>
<td>2.20</td>
<td>41.87</td>
<td>27.26</td>
</tr>
<tr>
<td>0.6</td>
<td>2.57</td>
<td>2.26</td>
<td>0.58</td>
<td>8.75</td>
<td>17.01</td>
<td>15.35</td>
<td>2.18</td>
<td>50.21</td>
<td>27.58</td>
</tr>
<tr>
<td>0.7</td>
<td>2.27</td>
<td>2.22</td>
<td>0.20</td>
<td>8.07</td>
<td>16.81</td>
<td>16.81</td>
<td>0.96</td>
<td>52.87</td>
<td>37.81</td>
</tr>
<tr>
<td>0.8</td>
<td>3.79</td>
<td>3.14</td>
<td>0.27</td>
<td>9.24</td>
<td>19.71</td>
<td>19.07</td>
<td>0.42</td>
<td>68.02</td>
<td>48.22</td>
</tr>
<tr>
<td>0.9</td>
<td>3.06</td>
<td>2.82</td>
<td>0.24</td>
<td>8.51</td>
<td>13.82</td>
<td>17.06</td>
<td>0.30</td>
<td>56.60</td>
<td>37.76</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A. COMPUTATIONAL RESULTS

Table A.3: Impact of varying the number of variables n and data range R on performance of Algorithm 1 with a group of strongly correlated instances of Type 2 and $P = 0.5$.

<table>
<thead>
<tr>
<th>n</th>
<th>R = 1000</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>R = 5000</th>
<th></th>
<th></th>
<th></th>
<th>R = 10000</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.09</td>
<td>0.15</td>
<td>0.13</td>
<td>0.00</td>
<td>0.31</td>
<td>0.61</td>
<td>0.55</td>
<td>0.02</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.22</td>
<td>0.25</td>
<td>0.00</td>
<td>0.82</td>
<td>2.83</td>
<td>1.78</td>
<td>0.14</td>
<td>6.23</td>
<td>15.42</td>
<td>10.74</td>
<td>0.75</td>
<td>47.81</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.45</td>
<td>0.47</td>
<td>0.00</td>
<td>1.83</td>
<td>8.84</td>
<td>6.90</td>
<td>0.55</td>
<td>27.20</td>
<td>24.95</td>
<td>22.42</td>
<td>0.21</td>
<td>74.63</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>3.16</td>
<td>2.98</td>
<td>0.01</td>
<td>10.84</td>
<td>51.04</td>
<td>51.38</td>
<td>0.01</td>
<td>178.91</td>
<td>185.86</td>
<td>159.35</td>
<td>11.41</td>
<td>585.12</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>7.66</td>
<td>7.91</td>
<td>0.02</td>
<td>22.23</td>
<td>151.15</td>
<td>132.95</td>
<td>5.71</td>
<td>443.04</td>
<td>541.53</td>
<td>472.01</td>
<td>17.20</td>
<td>1519.45</td>
<td></td>
</tr>
</tbody>
</table>

Table A.4: Impact of varying the percentage P and data range R on performance of Algorithm 1 with a group of strongly correlated instances of Type 2 and $n = 10^3$.

<table>
<thead>
<tr>
<th>P</th>
<th>R = 1000</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>R = 5000</th>
<th></th>
<th></th>
<th></th>
<th>R = 10000</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.27</td>
<td>0.14</td>
<td>0.00</td>
<td>0.46</td>
<td>4.45</td>
<td>2.28</td>
<td>0.31</td>
<td>8.05</td>
<td>15.11</td>
<td>8.26</td>
<td>0.71</td>
<td>29.27</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.33</td>
<td>0.24</td>
<td>0.00</td>
<td>0.71</td>
<td>6.20</td>
<td>3.64</td>
<td>0.47</td>
<td>13.08</td>
<td>21.16</td>
<td>12.59</td>
<td>1.49</td>
<td>46.03</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.32</td>
<td>0.17</td>
<td>0.00</td>
<td>0.54</td>
<td>4.69</td>
<td>2.83</td>
<td>0.02</td>
<td>10.66</td>
<td>16.92</td>
<td>13.37</td>
<td>0.33</td>
<td>43.53</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.33</td>
<td>0.28</td>
<td>0.05</td>
<td>1.23</td>
<td>6.02</td>
<td>4.81</td>
<td>0.44</td>
<td>16.28</td>
<td>26.20</td>
<td>17.31</td>
<td>1.54</td>
<td>68.42</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.45</td>
<td>0.47</td>
<td>0.00</td>
<td>1.83</td>
<td>8.84</td>
<td>6.90</td>
<td>0.55</td>
<td>27.20</td>
<td>24.95</td>
<td>22.42</td>
<td>0.21</td>
<td>74.63</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.72</td>
<td>0.67</td>
<td>0.00</td>
<td>2.06</td>
<td>9.53</td>
<td>10.08</td>
<td>0.58</td>
<td>33.60</td>
<td>25.03</td>
<td>22.59</td>
<td>0.62</td>
<td>96.51</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.60</td>
<td>0.65</td>
<td>0.00</td>
<td>2.04</td>
<td>18.26</td>
<td>16.19</td>
<td>0.08</td>
<td>44.54</td>
<td>45.01</td>
<td>52.66</td>
<td>0.18</td>
<td>171.93</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.70</td>
<td>0.67</td>
<td>0.00</td>
<td>2.40</td>
<td>15.72</td>
<td>15.76</td>
<td>0.09</td>
<td>47.47</td>
<td>54.56</td>
<td>54.28</td>
<td>0.10</td>
<td>180.19</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.40</td>
<td>0.45</td>
<td>0.00</td>
<td>1.63</td>
<td>13.12</td>
<td>13.16</td>
<td>0.02</td>
<td>36.09</td>
<td>50.58</td>
<td>52.72</td>
<td>0.58</td>
<td>178.21</td>
<td></td>
</tr>
</tbody>
</table>

Table A.5: Impact of varying the number of variables n and data range R on performance of the integer linear programming problem 2.3 with a group of uncorrelated instances of Type 2 and $P = 0.5$.

<table>
<thead>
<tr>
<th>P</th>
<th>R = 100</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>R = 300</th>
<th></th>
<th></th>
<th></th>
<th>R = 500</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
<td>CPU time (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.03</td>
<td>0.08</td>
<td>0.10</td>
<td>0.02</td>
<td>0.05</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.21</td>
<td>0.13</td>
<td>0.10</td>
<td>0.78</td>
<td>0.96</td>
<td>0.80</td>
<td>0.39</td>
<td>3.76</td>
<td>1.78</td>
<td>1.12</td>
<td>0.75</td>
<td>4.74</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.07</td>
<td>0.72</td>
<td>0.38</td>
<td>3.64</td>
<td>5.88</td>
<td>5.58</td>
<td>2.06</td>
<td>29.20</td>
<td>9.79</td>
<td>5.99</td>
<td>3.15</td>
<td>27.27</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.94</td>
<td>1.39</td>
<td>1.06</td>
<td>6.84</td>
<td>14.27</td>
<td>13.55</td>
<td>5.69</td>
<td>58.55</td>
<td>26.89</td>
<td>26.41</td>
<td>10.22</td>
<td>118.08</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.45</td>
<td>6.75</td>
<td>2.37</td>
<td>39.20</td>
<td>36.07</td>
<td>48.34</td>
<td>11.06</td>
<td>250.02</td>
<td>79.41</td>
<td>76.23</td>
<td>19.25</td>
<td>323.14</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>14.58</td>
<td>15.53</td>
<td>4.13</td>
<td>69.71</td>
<td>51.72</td>
<td>52.94</td>
<td>21.90</td>
<td>203.89</td>
<td>186.76</td>
<td>186.76</td>
<td>272.88</td>
<td>36.90</td>
<td>1227.79</td>
</tr>
<tr>
<td>70</td>
<td>25.59</td>
<td>28.73</td>
<td>7.28</td>
<td>138.20</td>
<td>127.34</td>
<td>151.93</td>
<td>29.34</td>
<td>730.71</td>
<td>336.56</td>
<td>382.42</td>
<td>63.45</td>
<td>1365.06</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>27.78</td>
<td>30.68</td>
<td>11.67</td>
<td>147.03</td>
<td>234.08</td>
<td>300.29</td>
<td>51.13</td>
<td>1091.19</td>
<td>744.64</td>
<td>841.09</td>
<td>110.69</td>
<td>3006.52</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A. COMPUTATIONAL RESULTS

CPU time (s)

<table>
<thead>
<tr>
<th>P</th>
<th>R = 100</th>
<th></th>
<th></th>
<th>R = 300</th>
<th></th>
<th></th>
<th>R = 500</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>0.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>0.3</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>0.4</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>0.5</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>0.6</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.07</td>
<td>0.14</td>
<td>0.03</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>0.7</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
<td>0.18</td>
<td>0.04</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>0.8</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
<td>0.10</td>
<td>0.23</td>
<td>0.05</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>0.9</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
<td>0.12</td>
<td>0.31</td>
<td>0.05</td>
<td>0.06</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table A.6: Impact of varying the percentage P and data range R on performance of the integer linear programming problem 2.3 with a group of uncorrelated instances of Type 2 and $n = 10$.

<table>
<thead>
<tr>
<th>P</th>
<th>R = 100</th>
<th></th>
<th></th>
<th>R = 300</th>
<th></th>
<th></th>
<th>R = 500</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.08</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>20</td>
<td>0.67</td>
<td>0.30</td>
<td>0.15</td>
<td>1.41</td>
<td>2.99</td>
<td>0.70</td>
<td>7.18</td>
<td>10.06</td>
<td>8.74</td>
</tr>
<tr>
<td>30</td>
<td>5.50</td>
<td>3.52</td>
<td>0.52</td>
<td>17.78</td>
<td>103.33</td>
<td>76.33</td>
<td>28.33</td>
<td>396.70</td>
<td>271.33</td>
</tr>
<tr>
<td>40</td>
<td>41.82</td>
<td>27.17</td>
<td>3.10</td>
<td>102.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>209.38</td>
<td>158.78</td>
<td>3.54</td>
<td>623.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table A.7: Impact of varying the number of variables n and data range R on performance of the integer linear programming problem 2.3 with a group of strongly correlated instances of Type 2 and $P = 0.50$.

<table>
<thead>
<tr>
<th>P</th>
<th>R = 100</th>
<th></th>
<th></th>
<th>R = 300</th>
<th></th>
<th></th>
<th>R = 500</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>0.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>0.3</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>0.4</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>0.5</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>0.6</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
<td>0.03</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>0.7</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>0.8</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.09</td>
<td>0.11</td>
<td>0.15</td>
<td>0.05</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>0.9</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.11</td>
<td>0.13</td>
<td>0.17</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table A.8: Impact of varying the percentage P and data range R on performance of the integer linear programming problem 2.3 with a group of strongly correlated instances of Type 2 and $n = 10$.

Bibliography

