
Query Evaluation in Probabilistic Relational Databases

Esteban Zimányi

Université Libre de Bruxelles, 50 Av. F. Roosevelt, C.P. 175/02, 1050 Brussels,
Belgium, e-mail: ezimanyi@ulb.ac.be

Abstract

This paper describes a generalization of the relational model in order to cap-
ture and manipulate a type of probabilistic information. Probabilistic databases
are formalized by means of logic theories based on a probabilistic first-order lan-
guage proposed by Halpern. A sound a complete method is described for evaluating
queries in probabilistic theories. The generalization proposed can be incorporated
into existing relational systems with the addition of a component for manipulating
propositional formulas.

1 Introduction

The introduction of incomplete and uncertain information in relational data-
bases has been an active area of research (see e.g. [43] for a survey).

The first attempts to introduce incomplete information were the study of null
values (e.g., [3,11,30,7]) and disjunctive information [38,12,18,19,42] . The
definition of closure assumptions in the presence of disjunctive information
(e.g., [21,32,27]) has also led to the field of disjunctive logic programming.
Minker [22] surveys the developments in this field.

Representing and handling uncertain information have also been active areas
of research in the last two decades. Theories for handling uncertain information
include probabilistic approaches, Shafer’s Evidence Theory, Zadeh’s Possibility
Theory, Cohen’s Theory of Endorsements, in addition to all the work done in
non-monotonic logics. To review these theories’ basic concepts, we refer for
example to [36] .

In the context of relational databases, research has focused on uncertainty
under two different approaches. The first one uses Zadeh’s fuzzy sets and pos-
sibility theory to define fuzzy databases. The second one follows a probabilistic
framework to define probabilistic databases.

Preprint submitted to Elsevier Science 11 April 1996

Fuzzy databases were proposed as an attempt to extend the classical relational
model for manipulating imprecise data values such as “John’s salary is around
60,000” or “John has a high salary”. Fuzzy set theory and fuzzy logic (e.g.,
[39–41]) provide a mathematical framework to deal with such extended data
values. Important work has been done on the study of relational databases
in the light of fuzzy set theory including areas such as generalizing classical
relational operators, query language design, query evaluation, and integrity
constraint modeling. For an entry point to this subject’s bibliography, we
refer for example to [28] .

For modeling uncertainty in relational databases, the probabilistic approach
has been much less studied than the fuzzy approach. Probabilistic models for
relational databases have been proposed in [6,2,1,26] , but there is still work to
be done. In Section 6, we review related approaches concerning probabilistic
extensions of deductive databases and logic programming.

As in the case of the fuzzy approach, two types of probabilistic information
may be introduced in relational databases. The first one allows to represent
attributes whose exact value is unknown but with a probability distribution;
for example, “Ralph will teach a course which is either Calculus or Physics,
the former with probability 0.8 and the latter with probability 0.2”. The ma-
nipulation of this kind of information is studied in [1] . The second type of
information allows to represent events whose probability lies in the interval
[0, 1]; for example, “the probability that Paul takes Calculus is 0.8”.

This paper describes an extension of the relational model in order to capture
and manipulate the second type of probabilistic information. We define proba-
bilistic relations as generalizations of classical relations with a supplementary
attribute wR(t̄), indicating the probability that tuple t̄ belongs to relation R.

Like classical relational databases are formalized with first-order logic theories
[29,30,10] , we formalize probabilistic databases by means of probabilistic logic
theories based on a probabilistic language proposed by Halpern [9] . Given a
first-order language for reasoning about a domain and a formula φ of this logic,
the probabilistic language allows formulas of the form w(φ) ≥ 1

2
which can be

interpreted as “the probability that φ is satisfied is greater than or equal to
1
2
”. Once probabilistic databases are formalized with probablistic theories, a

sound and complete method for query evaluation is proposed.

The remaining sections are as follows. In Section 2, we discuss, by means of
examples, the representational aspects and the semantics of probabilistic rela-
tional databases. Section 3 gives an introduction to the formal preliminaries in
probabilistic languages, the formalization of probabilistic databases with prob-
abilistic theories, and the definition of queries in these theories. We introduce
also in that section a running example is used throughout the paper. We give

2

then, in Sections 4 and 5, a sound and complete query evaluation algorithm for
probabilistic theories. Finally, Section 6 discusses related works while Section
7 summarizes the results of the paper and indicates some directions for future
research.

2 Probabilistic databases

Information of a stochastic nature is very common in real-world applications.
Modeling probabilistic information is thus a significant aspect in database
and artificial intelligence applications. To generalize the relational model with
uncertain information, we must distinguish two types of uncertainties: uncer-
tainties in data values and uncertainties in the association between values. An
example of uncertainty in data values with a relation teaches(professor,course)
is “John teaches a course which is Algebra with probability 0.8 and Calculus
with probability 0.2”. An example of uncertainty in the association between
values with a relation takes(student,course) is “the probability that Peter takes
the Databases course is 0.9”. Uncertainties in data values and uncertainties in
the association between values can also be combined.

We study in this paper the representation and manipulation of the second type
of uncertainty. We define probabilistic relations as generalizations of classical
relations whith a supplementary attribute wR(t̄), indicating the probability
that tuple t̄ belongs to relation R. An example is given in Figure 1. This

takes
student course wR

Tom Physics 1.0
Tom Algebra 0.9
John Physics 0.5
Anne Algebra 0.6

Fig. 1. A probabilistic relation.

relation represents, for example, that Tom surely takes Physics, and that the
probability that he takes Algebra is 0.9. Thus, the probability that he does
not take Algebra is 0.1. Probabilistic relations are written in tabular form as
in Figure 1, or in a set notation as

takes = {(Tom,Physics)/1.0, (Tom,Algebra)/0.9,
(John,Physics)/0.5, (Anne,Algebra)/0.6}.

Semantics for probabilistic relations can be stated as follows. Consider relation
takes of Figure 1, and suppose that a student takes a course independently
of the courses taken by the other students. Suppose also that the relation

3

is interpreted under a closed world assumption, specifying that every pair
(student,course) not present in the relation has probability 0.

Under these assumptions, relation takes represents 23 = 8 possible situations
with certain information, varying from the situation where only (Tom,Physics)
belongs to the relation to the situation where the 4 tuples belong to the rela-
tion. Each of these “possible worlds” can be represented by a classical relation
with an associated probability, computed as the product of the probabilities
for the presence or absence of each tuple of relation takes. These possible
worlds are given in Figure 2.

(Tom,Physics) (Tom,Physics) (Tom,Physics) (Tom,Physics)
(Tom,Algebra) (Tom,Algebra) (Tom,Algebra) (John,Physics)
(John,Physics) (John,Physics) (Anne,Algebra) (Anne,Algebra)
(Anne,Algebra)

0.27 0.18 0.27 0.03
(Tom,Physics) (Tom,Physics) (Tom,Physics) (Tom,Physics)
(Tom,Algebra) (John,Physics) (Anne,Algebra)

0.18 0.02 0.03 0.02

Fig. 2. Possible worlds of relation takes.

To formalize probabilistic databases we use a probabilistic language proposed
by Halpern [9] , a two-sorted logic where a sort O describes objects of the
domain and a sort F describes probabilities. Variables of sorts O and F are
denoted, respectively, by x and by xf .

We use probabilistic theories to formalize probabilistic databases. As in Re-
iter’s relational theories [30] , each relation is associated with an object pred-
icate of the same name, having as many places as there are attributes in the
relation. Also, probabilistic theories contain a non empty set of simple types,
modeling different domains for the variables, and a set of extension axioms
associated to each object predicate. Relation takes of Figure 1 can be repre-
sented with the following extension axioms:

(∀x)(∀y)(takes(x, y) →
(x = Tom ∧ y = Physics) ∨ (x = Tom ∧ y = Algebra) ∨
(x = John ∧ y = Physics) ∨ (x = Anne ∧ y = Algebra)), (1)

(∀x)(∀y)((x = Tom ∧ y = Physics) → takes(x, y)), (2)

(∀x)(∀y)(∀zf)(w(takes(x, y)) = zf ∧ 0 < zf < 1 ↔
(x = Tom ∧ y = Algebra ∧ zf = 0.9) ∨
(x = John ∧ y = Physics ∧ zf = 0.5) ∨
(x = Anne ∧ y = Algebra ∧ zf = 0.6)). (3)

The first extension axiom realizes the closure of the relation by stating all the

4

tuples belonging to it. Thus it can be deduced, for example, that Anne does not
take Physics. The second extension axiom states the tuples belonging surely to
the relation, i.e., the tuples having probability 1.0. Finally, the third extension
axiom specifies the tuples belonging to the relation with probability greater
than 0 and less than 1.0. Although these extension axioms could be stated
differently, the proposed notation facilitates the subsequent development.

Probabilistic theories contain another type of axioms dealing with the inde-
pendence of probabilities. One such an axiom could be

w(takes(Tom, Algebra) ∧ takes(John, Physics)) =

w(takes(Tom, Algebra))× w(takes(John, Physics)),

stating that the two events are independent. Another axiom could be

w(takes(Tom, Algebra) ↔ takes(Anne, Algebra)) = 0.9

stating that, with 0.9 probability, Tom takes Algebra iff Anne also does. Fi-
nally, the next axiom

w(takes(Tom, Algebra) | teaches(Peter, Algebra)) = 0.1

states that the probability that Tom takes Algebra given that Peter teaches
Algebra is 0.1.

This paper only considers the case where all the facts in the database are
independent. Relaxing this constraint is discussed in Sections 6 and 7.

3 Formal preliminaries

3.1 Probabilistic languages

We give now an introduction to Halpern’s probabilistic languages 1 which will
be used to formally define probabilistic databases in the next section. This
section is largely inspired from [9] .

A probabilistic language L is a two-sorted language where a sort O describes
objects of the domain and a sort F describes probabilities.

1 Halpern defines three types of probabilistic languages; the languages used here
are called type-2 languages.

5

Sort O contains finitely many constants a, b, c, . . . , a countable family of
variables x, y, . . . , and no function symbols. Sort F contains three constants 0,
1, and −1, representing the corresponding real numbers, a countable family of
variables xf , yf , . . . , and two binary function symbols + and ×, representing
addition and multiplication. Constants and variables of sort O (resp. F) are
called object (resp. field) constants and variables.

Language L contains finitely many predicates of sort O × · · · × O, called
object predicates. These predicates include object equality, denoted by =, and
a distinguished set of unary predicates called simple types; these simple types
allow to model the domains of standard relational theory. There are also two
predicates of sort F ×F , denoted by > and by =, representing the predicates
greater than and field equality.

In a probabilistic language L, object terms, field terms, and formulas are de-
fined inductively as follows. Object terms are object variables and constants.
Field terms are formed by starting with field variables or constants and terms
of the form w(ϕ), where ϕ is an arbitrary formula, and closing off under field
function application so that if t1, t2 are field terms, then t1 + t2 and t1 × t2
are field terms. Formulas are formed as in many-sorted logics. We distinguish
two types of formulas: first-order formulas are formulas without field terms,
whereas probabilistic formulas are arbitrary formulas of L.

The connectives ∨, →, and ∃ are defined in terms of ∧, ¬, and ∀ as usual.
Similarly, −, /,

√
, <, ≥, ≤, and k (where k is an integer) are defined in terms

of the basic elements of F . In addition, simple ground field terms (denoted
sgf-terms) are defined by induction as follows: we start with 0, 1, and −1, and
then we close off so that if t1 and t2 are sgf-terms, then so are t1 + t2, t1 − t2,
t1 × t2, t1/t2 if t2 6= 0, and

√
t1 if t1 ≥ 0.

The semantics of probabilistic languages is based on the concept of structures.
A structure of a probabilistic language L is a tuple M = (D, S, π, µ) where
D is the domain, S is a set of states or possible worlds, for each state s ∈ S,
π(s) assigns to object constants and predicates, respectively, constants and
relations of the right arity over D, and µ is a discrete probability function
assigning a probability to each possible world of S. For any A ⊆ S, we de-
fine µ(A) =

∑
s∈A µ(s). As usual, a valuation v assigns to every variable x a

constant v(x) from D.

Given a probability structure M , a state s, and a valuation v, we can associate
with every object (resp. field) term t an element [t](M,s,v) of D (resp. of R) and
with every formula ϕ a truth value, writing (M, s, v) |= ϕ if the value true is
associated with ϕ by (M, s, v). We just give a few clauses of the definition,

6

since they follow the lines of first-order logic:

– (M, s, v) |= P (x) iff v(x) ∈ π(s)(P);
– (M, s, v) |= (t1 = t2) iff [t1](M,s,v) = [t2](M,s,v);
– (M, s, v) |= (∀x)ϕ iff (M, s, v[x/d]) |= ϕ for all d ∈ D;
– [w(ϕ)](M,s,v) = µ({s′ ∈ S | (M, s′, v) |= ϕ}) for all s ∈ S.

We say M |= ϕ if (M, s, v) |= ϕ for all states s in M and all valuations v, and
say ϕ is valid, and write |= ϕ, if M |= ϕ for all structures M .

Halpern also gives an axiomatization of probabilistic languages. The axiom
system is composed of several parts. First, it includes axioms and inference
rules for first-order logic reasoning. Second, in order to reason about proba-
bilities, which are real numbers, the axiom system contains all instances of a
standard complete axiomatization for real closed fields (e.g. [35]). Finally, the
axiom system includes the axioms for probabilistic reasoning as follows. If ϕ
and ψ are arbitrary formulas, then

P1. ϕ → w(ϕ) = 1, if every object predicate symbol of ϕ appears in an
argument ψ of a probability term of the form w(ψ).

P2. w(ϕ) ≥ 0.
P3. w(ϕ ∧ ψ) + w(ϕ ∧ ¬ψ) = w(ϕ).

Also, the axiom system has the following inference rule to reason about prob-
abilities:

RP. From ϕ ↔ ψ infer w(ϕ) = w(ψ).

Halpern showed that although this axiom system is sound (i.e. if ` ϕ then
|= ϕ for every formula ϕ), there is no sound and complete axiomatization
when the domain is not finite. For this reason, we have considered probabilistic
languages containing finitely many constants. In this case, the axiom system
is sound and complete (i.e. ` ϕ iff |= ϕ for every formula ϕ).

We now give some results from [9] , which are used in the proofs of our
theorems. Two formulas ϕ and ψ are said to be mutually exclusive if, from
standard first-order reasoning, it follows that ` ¬(ϕ ∧ ψ). A set ϕ1, . . . , ϕk

of formulas is mutually exclusive if each pair ϕi, ϕj, for i 6= j, is mutually
exclusive.

Lemma 1 (1) ` w(true) = 1.
(2) ` w(false) = 0.
(3) ` w(ϕ1 ∨ . . . ∨ ϕk) = w(ϕ1) + · · · + w(ϕk) if ϕ1, . . . , ϕk are mutually

exclusive.
(4) If ` ϕ, then ` w(ϕ) = 1.
(5) ` w(ϕ) + w(¬ϕ) = 1.

7

(6) ` w(ϕ ∧ ψ) ≤ w(ϕ).
(7) ` w(ϕ) ≤ w(ϕ ∨ ψ).
(8) ` w(ϕ) = 1 → (w(ϕ ∧ ψ) = w(ψ)).
(9) ` w(ϕ) = 1 → (w(¬ϕ ∧ ψ) = 0).

(10) ` (w(ϕ ↔ ψ) = 1) → (w(ϕ) = w(ψ)).

3.2 Probabilistic Theories

In this section we show how to formalize probabilistic databases using prob-
abilistic theories. As already said, our work is inspired on Reiter’s work on
extended relational theories [30] .

Let L be a two-sorted probabilistic language. A finite set of formulas T is a
probabilistic theory iff T satisfies the following conditions:

(1) For every simple type predicate θ, T contains exactly one formula of the
form

(∀x)(θ(x) ↔ x = c(1) ∨ . . . ∨ x = c(r)),

where r ≥ 0 and the c(i) are object constants. This formula is called θ’s
extension axiom in T . If r = 0, θ’s extension axiom is (∀x)¬θ(x).

(2) T defines a simple type Λ to represent probabilities with the axiom

(∀xf)(Λ(xf) ↔ xf ≥ 0 ∧ xf ≤ 1).

(3) For every n-ary object predicate P , distinct from equality and simple
types, T contains the formulas:

(∀x̄)(P (x̄) → x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) ∨ x̄ = d̄(1) ∨ . . . ∨ x̄ = d̄(s)),

(∀x̄)(x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) → P (x̄)),

(∀x̄)(∀yf)(w(P (x̄)) = yf ∧ 0 < yf < 1 ↔ (x̄ = d̄(1) ∧ yf = p1) ∨ . . .

∨ (x̄ = d̄(s) ∧ yf = ps)),

where r, s ≥ 0, the c̄(i) and the d̄(i) are distinct tuples of object constants
of L, and the pi are sgf-terms such that pi ∈]0, 1[. These formulas are
called P ’s extension axioms in T . Notice that when P represents a clas-
sical relation (i.e. s = 0) then P ’s extension axioms are equivalent to
(∀x̄)(P (x̄) ↔ x̄ = c̄(1) ∨ . . .∨ x̄ = c̄(r)). Finally, if r + s = 0, P ’s extension
axiom is (∀x̄)¬P (x̄).

(4) Let β = {β1, . . . , βm} be the Herbrand base for the object predicates, i.e.,
the set of all distinct ground formulas of the form P (c̄), where P is an

8

object predicate and c̄ is a tuple of object constants of L. Then, for each
subset {βi1 , . . . , βik} ⊆ β, k ≥ 2, the theory T contains the axiom

w(βi1 ∧ . . . ∧ βik) = w(βi1)× . . .× w(βik).

These axioms, called independence assumption axioms, are denoted by
IAAT . Since L contains finitely many object constants and predicates,
the set β is finite and thus, there are finitely many axioms in IAAT .

(5) T contains the axiom (∀x)(x = x), and the axiom ci 6= cj for every pair
of distinct object constants (ci, cj). These axioms are called unique name
axioms and are denoted by UNAT .

(6) There are no other formulas in T .

Notice that, due to the axioms for simple types, we assume that the domains
are finite. As already said, this is needed since no complete axiomatization of
first-order probabilistic languages is possible when the domain is infinite.

We next give an example which is used as a running example throughout the
paper.

Example 2 Consider the following database where professor, student, and
course are simple types, course dep is a classical relation, and teaches is a
probabilistic relation

professor

Jean
Paul
Marie

student

Tom
John
Anne

course

Algebra
Calculus
Physics

course dep
course dep

Algebra CS
Calculus CS
Calculus EE
Physics EE

teaches
professor course w

Jean Algebra 1.0
Paul Calculus 0.7
Marie Calculus 0.3
Marie Physics 0.9

Suppose further that the database contains relation takes of Figure 1. The
theory T associated to the database contains, in addition to axioms (1)–(3)
for relation takes, the following axioms:

(∀x)(professor(x) ↔ x = Jean ∨ x = Paul ∨ x = Marie),

(∀x)(student(x) ↔ x = Tom ∨ x = John ∨ x = Anne),

(∀x)(course(x) ↔ x = Algebra ∨ x = Calculus ∨ x = Physics),

(∀xf)(Λ(xf) ↔ xf ≥ 0 ∧ xf ≤ 1),

(∀x)(∀y)(course dep(x, y) ↔

9

(x = Algebra ∧ y = CS) ∨ (x = Calculus ∧ y = CS) ∨
(x = Calculus ∧ y = EE) ∨ (x = Physics ∧ y = EE)),

(∀x)(∀y)(teaches(x, y) →
(x = Jean ∧ y = Algebra) ∨ (x = Paul ∧ y = Calculus) ∨
(x = Marie ∧ y = Calculus) ∨ (x = Marie ∧ y = Physics)),

(∀x)(∀y)((x = Jean ∧ y = Algebra) → teaches(x, y)),

(∀x)(∀y)(∀zf)(w(teaches(x, y)) = yf ∧ 0 < yf < 1 ↔
(x = Paul ∧ y = Calculus ∧ zf = 0.7) ∨
(x = Marie ∧ y = Calculus ∧ zf = 0.3) ∨
(x = Marie ∧ y = Physics ∧ zf = 0.9)),

w(teaches(Jean,Algebra) ∧ teaches(Paul,Calculus)) =

w(teaches(Jean,Algebra))× w(teaches(Paul,Calculus)),
...

(∀x)(x = x),

Jean 6= Paul, Jean 6= Marie, . . .

Theorem 3 Every probabilistic theory T is consistent.

Proof. We only give the sketch of a proof, which consists in constructing a
model of T . Given a probabilistic language L and a probabilistic theory T ,
let P1, . . . , Pk be the set of object predicates in L distinct from equality. We
associate to every predicate Pi a probabilistic relation of the same name con-
taining the information represented in Pi’s extension axioms. To each proba-
bilistic relation Pi we can associate a set of possible worlds REP(Pi). Further,
if P̄ = 〈P1, . . . , Pl〉, then from REP(Pi) it is easy to construct REP(P̄), the set
of possible worlds for the predicates of P̄ such that each pair 〈s, p〉 ∈ REP(P̄)
denotes a Herbrand interpretation s for the object predicates in L with its
associated probability p. We now prove that REP(P̄) defines a model of T .
For this, define a structure M = (D, S, π, µ) as follows. (1) D is the set of
all the object constants of L. (2) The set of states S is such that s ∈ S iff
there is a p such that 〈s, p〉 ∈ REP(P̄). (3) For every s ∈ S and for every
object constant a ∈ L, π(s)(a) = a. (4) For every s ∈ S, π(s)(=)(c, c) = true
iff c ∈ D and false otherwise. (5) For every object predicate Pi and state
s ∈ S, π(s)(Pi)(d̄) = true iff Pi(d̄) ∈ s and false otherwise. (6) µ is a discrete
probability function on S such that µ(s) = p iff 〈s, p〉 ∈ REP(P̄).

It is simple to verify that M is a model of T . 2

Before concluding this section, we recall some notations from [30] . First, the
type-restricted quantifiers are defined as follows. If τ is a simple type and if ϕ is
a formula, then (∀x/τ)ϕ abbreviates (∀x)(τ(x) → ϕ) and (∃x/τ)ϕ abbreviates

10

(∃x)(τ(x)∧ϕ). These type-restricted quantifiers restrict the possible x’s to just
those that belong to domain τ . Also if τ̄ = τ1, . . . , τn is a sequence of simple
types and c̄ = (c1, . . . , cn) is a tuple of object constants, then τ̄(c̄) denotes the
formula τ1(c1) ∧ . . . ∧ τn(cn).

3.3 Queries

In a probabilistic language L, queries are expressions of the form

Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉,

where x̄/τ̄ and ȳf/Λ̄ denote, respectively, x1/τ1, . . . , xm/τm and yf
1/Λ, . . . ,

yf
n/Λ, the xi and yf

i are distinct object and field variables of L, each τi is a
simple type of L, and F (x̄, ȳf) is a formula of L whose free variables are among
x̄ and ȳf and whose quantifiers are type-restricted. If m = n = 0, queries are
of the form Q = 〈 | F 〉, where F has no free variables and correspond to asking
the database if F is true.

Let Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉 be a query and let c̄ and p̄ be, respectively,
tuples of object constants and sgf-terms. Intuitively, (c̄, p̄) is an answer to the
query Q if c̄ and p̄ satisfy the simple types τ̄ and Λ̄, and if F (c̄, p̄) is verified
in T . In addition, we require p̄ to be different from 0̄ to eliminate unnecessary
answers. Formally, (c̄, p̄) is an answer to query Q in a probabilistic theory T
if and only if

(1) T ` τ̄(c̄);
(2) T ` Λ̄(p̄);
(3) T ` pi 6= 0 for at least one i = 1, . . . , n; and
(4) T ` F (c̄, p̄).

As usual, the set of answers to a query Q is denoted by ‖Q‖.

Condition (3) eliminates from ‖Q‖ those tuples c̄ such that T ` F (c̄, 0̄). For
instance, consider the query Q = 〈x/τ, yf/Λ | w(F (x)) = yf〉. Since there is
always a p ∈ [0, 1] such that T ` w(F (c)) = p, without condition (3) ‖Q‖
would always contain one answer for each c of the domain τ .

In the special case where the query is of the form 〈 | F 〉, the null tuple () is
the only answer to the query when T ` F and is {} otherwise; {()} denotes
the answer “yes” and {} denotes the answer “we don’t know”. An answer {()}
to the query 〈 | ¬F 〉 denotes the answer “no” to the original query 〈 | F 〉.

For example, consider a probabilistic theory stating that w(P (a)) = 1,
w(P (b)) = 0, and w(P (c)) = 0.5. Then, while the answer to Q1 = 〈 | P (a)〉 is

11

“yes” (since P (a) is true in every possible world), the answer to Q2 = 〈 | P (b)〉
is “we don’t know”. However, since the answer to Q′

2 = 〈 | ¬P (b)〉 is “yes”,
then the answer to the original query Q2 is “no”. On the contrary, the answer
to both Q3 = 〈 | P (c)〉 and Q′

3 = 〈 | ¬P (c)〉 is “we don’t know”.

We give in the next sections a sound and complete algorithm that computes
query answers in probabilistic theories. Query evaluation is studied in two
stages. First, we study first-order queries of the form Q = 〈x̄/τ̄ , yf/Λ |
w(F (x̄)) = yf〉, where F is a first-order formula. Then, we study probabilis-
tic queries of the form Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉, where F is an arbitrary
formula.

For the sake of clarity, we allow the projection, selection, and join opera-
tors to use query variables as attributes. For example, consider the queries
Q1 = 〈x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)〉 and Q2 = 〈x̄/τ̄ , z̄f/Λ̄ | F2(x̄, z̄f)〉, where x̄ =
〈x1, x2, x3〉, ȳf = 〈yf

1 , . . . , yf
4 〉 and z̄f = 〈zf

1 , . . . , zf
5 〉. Then, the expressions

πx̄(‖Q1 ‖), σx2=c∧yf
3 >0.5(‖Q1 ‖), and ‖Q1 ‖ 1x̄ ‖Q2 ‖ have their intuitive mean-

ing as follows π1,2,3(‖Q1 ‖), σ2=c∧6>0.5(‖Q1 ‖), and ‖Q1 ‖ 11=1∧2=2∧3=3 ‖Q2 ‖.

4 First-order queries

As defined above, first-order queries are expressions of the form

Q = 〈x̄/τ̄ , yf/Λ | w(F (x̄)) = yf〉,

where F is a first-order formula. The answer to such a query is a set of tuples
(c̄, p) such that c̄ satisfies the simple types τ̄ , p ∈]0, 1], and T ` w(F (c̄)) = p.
The answer ‖Q‖ can be seen as a probabilistic relation.

As shown by the following example, probabilistic relations do not allow to
decompose first-order queries in order to obtain the answer to a query from
the answer to its subqueries.

Example 4 Consider the simple type τ = {a, b, c, d}, the probabilistic rela-
tions P1, P2,

P1

(a, b) 0.8
(b, b) 0.7

P2

(a, c) 0.7
(a, d) 0.6
(b, c) 0.5

the formula F = [P1(x, y) ∧ P2(y, z)] ∨ [P1(x, y) ∧ P2(x, z)] and the query
Q = 〈x/τ, y/τ, z/τ, yf/Λ | w(F) = yf〉.

12

If F1 = P1(x, y) ∧ P2(y, z) and F2 = P1(x, y) ∧ P2(x, z), the answers to the
subqueries Q1 = 〈x/τ, y/τ, z/τ, yf/Λ | w(F1) = yf〉, and Q2 = 〈x/τ, y/τ,
z/τ, yf/Λ | w(F2) = yf〉 are as follows

‖Q1 ‖ = {(a, b, c)/0.8× 0.5, (b, b, c)/0.7× 0.5}, and

‖Q2 ‖ = {(a, b, c)/0.8× 0.7, (a, b, d)/0.8× 0.6, (b, b, c)/0.7× 0.5}.
However, in the general case it is not possible to obtain the answer to the
original query Q from the probabilistic relations ‖Q1 ‖ and ‖Q2 ‖. Indeed,
since by the axioms of probabilistic logic w(F1 ∨ F2) = w(F1) + w(F2) −
w(F1 ∧ F2) it is necessary to obtain in addition the answer to the query
Q3 = 〈x/τ, y/τ, z/τ, yf/Λ | w(P1(x, y) ∧ P2(y, z) ∧ P2(x, z)) = yf〉.

After evaluating Q3, we obtain the answer to Q as follows

‖Q‖ = {(a, b, c)/0.8× 0.85, (b, b, c)/0.7× 0.5, (a, b, d)/0.8× 0.6}.

In order to correctly decompose first-order queries, we define in the next sec-
tion a particular type of relations called trace relations. These relations keep
track of the origin of tuples resulting from applying relational operators. Thus,
they contain the necessary information to compute the correct probability val-
ues from the subqueries of a query. A detailed discussion of these relations is
presented in [42] .

4.1 Trace relations

By a trace relation, briefly a t-relation, we mean a classical relation extended
with one additional special column, called trace, containing for every tuple a
formula that traces the information of how the tuple has been obtained.

Definition 5 Given a probabilistic theory T , the set of formulas FT is formed
by starting with true, false, and P (c̄) where P is an object predicate and c̄ is
a tuple of object constants, and closing off under conjunction, disjunction,
and negation 2 . If F1 and F2 are formulas from FT , then F1F2 denotes the
conjunction of both formulas and F 1 denotes ¬F1.

Definition 6 Let R(A1, . . . , An) be a relation scheme, where dom(Ai) is the
domain of Ai, for i = 1, . . . , n. Then, a t-relation R on R is defined as follows:

R ⊂ {c̄/ϕ | c̄ = (c1, . . . , cn) ∈ dom(A1)× . . .× dom(An) ∧ ϕ ∈ FT }.
2 Formulas in FT should be considered as propositional formulas. In fact, it is

equivalent to construct FT by assigning a unique propositional constant pi to every
atom of the Herbrand base β for the object predicates.

13

For a tuple c̄/ϕ, we say that c̄ is the pure tuple and ϕ is the trace attribute.

A t-relation R is represented either in set notation as R = {c̄1/ϕ1, . . . , c̄m/ϕm}
or in a tabular form where the trace attribute is represented in an additional
column. An example of t-relation is given below.

abc P (ab) ∧ [P (ac) ∨Q(ac)]
abb P (ab)
acd [P (ac) ∨Q(ac)] ∧ [P (ad) ∨Q(cd)]

T-relations have some similarities with Assumption-Based Truth Maintenance
Systems (e.g., [31]). In fact, a tuple c̄/ϕ in a t-relation R represents the
assertion “R(c̄) is true in all the possible worlds in which ϕ is true”. Thus,
ϕ is the disjunction of all the justifications of R(c̄). As it follows from the
definition of relational operators (given later in this section), t-relations allow
to compute, in an algebraic way, the set of justifications for every first-order
formula F and tuple c̄. Notice that the concept of t-relations have also been
studied in [34,33,16,15] . T-relations have also some similarities with the C-
tables of [11] .

T-relations can contain two types of redundancies. First, a tuple c̄/ϕ can be
such that ϕ is equivalent to false; in this case the tuple can be eliminated. Sec-
ond, a t-relation can contain a set of tuples {c̄/ϕ1, . . . , c̄/ϕn}; this redundancy
is eliminated by replacing the set of tuples with c̄/ϕ where ϕ = ϕ1 ∨ . . .∨ ϕn.

We now define an operator, called REDUCE , that takes as argument a t-
relation R and gives as result a t-relation R0 obtained by removing every
redundancy from R.

Definition 7 Let R be a t-relation. We define REDUCE (R) = R0 where

R0 = {c̄/ϕ | for n ≥ 1, {c̄/ϕ1, . . . , c̄/ϕn} ⊆ R are all the tuples having
c̄ as pure tuple and ϕ = ϕ1 ∨ . . . ∨ ϕn ∧ ¬(ϕ ↔ false)}.

Relational operators over t-relations are similar to classical relational opera-
tors. Redundancies are avoided with the REDUCE operator.

Definition 8 (Projection) If R1 is a t-relation of scheme R1(Ā, B̄), then
πĀ(R1) = REDUCE (R) where

R = {ā/ϕ | (∃b̄)((ā, b̄/ϕ ∈ R1)}.

Definition 9 (Selection) If R1 is a t-relation and H a selection formula, then
σH(R1) = REDUCE (R) where

R = {c̄/ϕ | c̄/ϕ ∈ R1 ∧H(c̄)},

14

and H(c̄) is the formula H in which the number of attribute i is replaced by
ci.

Definition 10 (Union) If R1, R2 are two domain-compatible t-relations, then
R1 ∪R2 = REDUCE (R) where

R = {c̄/ϕ | c̄/ϕ ∈ R1 ∨ c̄/ϕ ∈ R2}.

Definition 11 (Difference) If R1 and R2 are two domain-compatible t-rela-
tions, then R1 −R2 = REDUCE (R) where

R = {c̄/ϕ | c̄/ϕ1 ∈ R1 ∧ ([c̄/ϕ2 ∈ R2 ∧ ϕ = ϕ1 ∧ ¬ϕ2] ∨
[c̄/φ 6∈ R2 for any φ ∧ ϕ = ϕ1])}.

Definition 12 (Intersection) If R1 and R2 are two domain-compatible t-re-
lations, then R1 ∩R2 = REDUCE (R) where

R = {c̄/ϕ | c̄/ϕ1 ∈ R1 ∧ c̄/ϕ2 ∈ R2 ∧ ϕ = ϕ1 ∧ ϕ2}.

Definition 13 (Cartesian product) If R1 and R2 are two t-relations, then
R1 ×R2 = REDUCE (R) where

R = {āb/ϕ | ā/ϕ1 ∈ R1 ∧ b̄/ϕ2 ∈ R2 ∧ ϕ = ϕ1 ∧ ϕ2}.

Definition 14 (Division) Let R1 and R2 be t-relations of scheme R1(Ā, B̄)
and R2(B̄) respectively, where R2 = {b̄1/ψ1, . . . , b̄n/ψn}. Then R1 ÷ R2 =
REDUCE (R) where

R = {ā/ϕ | (∀i)(1 ≤ i ≤ n → [āb̄i/ϕi ∈ R1] ∨ [ϕi = false]) ∧
ϕ =

n∧

i=1

ψi → ϕi)}.

Notice that it is required that either (1) āb̄i/ϕi belongs to R1 or (2) the pure
tuple āb̄i does not appear in R1, which implicitly means that āb̄i/ false belongs
to R1.

The intuition for the term ψi → ϕi is as follows. Since b̄i ∈ R2 when ψi is true,
then ā ∈ R1 ÷R2 provided that when ψi is true, ϕi is also true.

Notice that if R2 corresponds to a classical relation, i.e. R2 = {b̄1/ true, . . . ,
b̄n/ true}, then in the above definition ϕ is given by ϕ =

∧n
i=1 ϕi.

The trace relational algebra defined above is similar to the “information source
tracking” proposed in [33] except for division which is not defined there. We
studied in [42] the semantical correctness of these algebraic operators and

15

proved that all operators but join and Cartesian product satisfy a strong
correctness criteria, whereas these two operators satisfy a weak correctness
criteria.

Example 15 Given the following t-relation Rt

Rt

abd R(abd)
abe R(abe)
abf R(abf)
ace R(ace)
bce R(bce)
ccf R(ccf)

let us evaluate the expression f(Rt) = σA=a∨A=b(πAC(πAB(Rt) 1 πBC(Rt))).

The t-relations S = πAB(Rt) and T = πBC(Rt) are as follows.

S
ab R(abd) ∨R(abe) ∨R(abf)
ac R(ace)
bc R(bce)
cc R(ccf)

T
bd R(abd)
be R(abe)
bf R(abf)
ce R(ace) ∨R(bce)
cf R(ccf)

Then U = S 1 T and πAC(U) are given below.

U
abd R(abd)
abe R(abe)
abf R(abf)
ace R(ace)
acf R(ace) ∧R(ccf)
bce R(bce)
bcf R(bce) ∧R(ccf)
cce R(ccf) ∧ [R(ace) ∨R(bce)]
ccf R(ccf)

πAC(U)
ad R(abd)
ae R(abe) ∨R(ace)
af [R(abf) ∨R(ace)]∧

[R(abf) ∨R(ccf)]
be R(bce)
ce R(ccf) ∧ [R(ace) ∨R(bce)]
cf R(ccf)

Finally, f(RT) is given below.

f(Rt)
ad R(abd)
ae R(abe) ∨R(ace)
af [R(abf) ∨R(ace)] ∧ [R(abf) ∨R(ccf)]
be R(bce)

16

Consider now a first-order query of the form Q = 〈x̄/τ̄ , yf/Λ | w(F (x̄)) =
yf〉. To evaluate it we associate to each object predicate a t-relation, and we
associate to Q a t-query Qt (defined below). The answer to Qt is obtained by
applying (extended) algebraic operators to the t-relations. The answer to the
original query Q is thus obtained by transforming the t-relation ‖Qt ‖ into
a probabilistic relation ‖Q‖, that is, by replacing a tuple c̄/ϕ in ‖Qt ‖ by a
tuple (c̄, p) in ‖Q‖ where T ` w(F (c̄)) = w(ϕ) = p. All this is formalized in
the following sections.

4.2 T-queries

In a probabilistic language L, t-queries are expressions of the form Qt = 〈x̄/τ̄ |
F (x̄)〉, where F (x̄) is a first-order formula of L whose free variables are among
x̄ and whose quantifiers are type-restricted. If F has no free variables, the
query is of the form Qt = 〈 | F 〉.

Let c̄ be a tuple of object constants and ϕ be a formula from FT . Then, c̄/ϕ
is an answer to the t-query Qt = 〈x̄/τ̄ | F (x̄)〉 in a probabilistic theory T if
and only if

(1) T ` τ̄(c̄);
(2) T ` w(F (c̄)) > 0;
(3) T ` ϕ ↔ F (c̄); and
(4) No atom P in ϕ is such that T ` P or T ` ¬P .

Since there are many formulas ϕ′ in FT satisfying condition (3), condition
(4) selects the most general of them, i.e. the formula ϕ containing the least
number of literals. Thus, given a t-query Qt and a tuple c̄ of constants, there
is only one formula satisfying c̄/ϕ ∈ ‖Qt ‖. This is shown in the following
example.

Example 16 Consider a probabilistic theory T and a t-query

Qt = 〈x/τ | (∃y/τ)P (x, y)〉.

Suppose that T defines the simple type τ = {a, b, c} and the probabilistic rela-
tion P = {(a, a)/0.5, (a, b)/0.6, (b, b)/1.0} with the following extension axioms:

(∀x)(τ(x) ↔ x = a ∨ x = b ∨ x = c),

(∀x)(∀y)(P (x, y) → (x = a ∧ y = a) ∨
(x = a ∧ y = b) ∨ (x = b ∧ y = b)),

(∀x)(∀y)(x = b ∧ y = b → P (x, y)),

17

(∀x)(∀y)(∀zf)(w(P (x, y)) = zf ∧ 0 < zf < 1 ↔
(x = a ∧ y = a ∧ zf = 0.5) ∨ (x = a ∧ y = b ∧ zf = 0.6)).

By τ ’s extension axiom, we have T ` (∃y/τ)P (x, y) ↔ P (x, a) ∨ P (x, b) ∨
P (x, c).

Consider now constant a. By P ’s first extension axiom, T ` ¬P (a, c) and
then T ` P (a, a) ∨ P (a, b) ∨ P (a, c) ↔ P (a, a) ∨ P (a, b). Conditions (1)–
(2) are verified since T ` τ(a) and T ` w((∃y/τ)P (x, y)) > 0. Also, since
P (a, a)∨P (a, b) satisfies conditions (3)–(4), then a/P (a, a)∨P (a, b) ∈ ‖Qt ‖.

Consider now constant b. Since T ` P (b, b), then T ` (∃y/τ)P (b, y) ↔ true.
Since T ` τ(b) and T ` w((∃y/τ)P (b, y)) > 0, then b/ true ∈ ‖Qt ‖.

In a probabilistic theory T , we associate to every object predicate P a t-
relation |P |t as follows. If P is an object predicate whose extension axiom is
(∀x̄)¬P (x̄), then |P |t = {}. If θ is a simple type whose extension axiom is

(∀x)(θ(x) ↔ x = c(1) ∨ . . . ∨ x = c(r)),

then |θ |t = {c(1)/ true, . . . , c(r)/ true}. If P is an object predicate, different
from equality and from simple types, whose first two extension axioms in T
are

(∀x̄)(P (x̄) → x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) ∨ x̄ = d̄(1) ∨ . . . ∨ x̄ = d̄(s)),

(∀x̄)(x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) → P (x̄)),

then |P |t = {c̄(1)/ true, . . . , c̄(r)/ true, d̄(1)/P (d̄(1)), . . . , d̄(s)/P (d̄(s))}. Also, for
the object equality we define

|= |t def
= {(c, c)/ true | c is an object constant of L}.

Now, let τ̄ = 〈τ1, . . . , τn〉 be a sequence of simple types. If n = 0, then | τ̄ |t
denotes {()}, and if n > 0, then

| τ̄ |t = {c̄/ true | c̄ = (c1, . . . , cn) ∧ (∀i)(1 ≤ i ≤ n → ci/ true ∈ |τi |t)}.

Before studying the evaluation of t-queries, we give some preliminary lemmas.
The easy proofs are omitted.

Lemma 17 Let T be a probabilistic theory, let τ̄ be a sequence of simple types,
and let c̄ be a tuple of object constants. Then T ` τ̄(c̄) iff c̄/ true ∈ | τ̄ |t. 2

18

The next lemma relates the probability of atomic formulas of the form P (c̄)
in a probabilistic theory T with the t-relation |P |t.

Lemma 18 Let T be a probabilistic theory, let P be an object predicate, pos-
sibly a simple type or equality, and let c̄ be a tuple of object constants. Then

(1) T ` w(P (c̄)) > 0 iff either c̄/ true or c̄/P (c̄) belongs to |P |t.
(2) T ` w(P (c̄)) < 1 iff c̄/ true 6∈ |P |t. 2

Given the independence axioms in probabilistic theories, the next lemma al-
lows to recursively decompose a complex query into simpler subqueries. This
lemma is used with queries containing conjunctions and universal quantifiers.

Lemma 19 Let T be a probabilistic theory and let F1 and F2 be ground first-
order formulas without quantifiers. Then T ` w(F1) > 0 and T ` w(F2) > 0
iff T ` w(F1 ∧ F2) > 0. 2

The next lemma, combined with the axioms in probabilistic languages, tells
us that a first-order formula F has probability 0 in a probabilistic theory T
iff T ` ¬F .

Lemma 20 Let T be a probabilistic theory, let F (x̄) be a first-order formula
with type-restricted quantifiers and let c̄ be a tuple of object constants. Then
T ` w(F (c̄)) = 0 iff T ` ¬F (c̄). 2

Finally, the next lemma states that if a pure tuple c̄ does not appear in the
answer of a t-query Qt, then it has probability 0 to satisfy the associated query
Q.

Lemma 21 Let T be a probabilistic theory, let Qt = 〈x̄/τ̄ | F (x̄)〉 be a t-
query and let c̄ be a tuple of object constants such that T ` τ̄(c̄). Then there
c̄/ϕ 6∈ ‖Qt ‖ for no formula ϕ iff T ` w(F (c̄)) = 0. 2

4.3 Primitive t-queries

This section shows how to evaluate primitive queries of the form 〈x̄/τ̄ | P (r̄)〉
or of the form 〈x̄/τ̄ | ¬P (r̄)〉 where P is an object predicate or the equality.
But prior to that, we give preliminary definitions.

Definition 22 [30] Let m ≥ n, let r̄ be a m-tuple of variables and/or con-
stants, let x̄ = x1, . . . , xn be a sequence of distinct variables where each xi is a
variable that appears in r̄ and let c̄ = (c1, . . . , cn) be a tuple of constants. We
define r̄c̄|x̄ as the m-tuple obtained replacing in r̄ each occurrence of xi by ci,
for i = 1, . . . , n.

19

For example, (x, y, a, x, z, y)(b,c,d)|(y,x,z) = (c, b, a, c, d, b).

Definition 23 [38] Let r̄ = (r1, . . . , rm) be an m-tuple of variables and/or
constants and let x̄ = (x1, . . . , xn) be a sequence of distinct variables where
each xi appears in r̄. We define F (r̄, x̄) as the conjunction of formulas of the
form: (1) i = ri if ri is a constant and (2) i = j if ri is a variable, for example
xk, and if rj is an occurrence of xk where 1 ≤ j ≤ m.

For example, if r̄ = x, y, a, x, z, y and x̄ = x, y, z then F (r̄, x̄) is 1 = 4 ∧ 2 =
6 ∧ 3 = a.

The following theorem shows how to obtain the answer to primitive t-queries
of the form 〈x̄/τ̄ | P (r̄)〉 where P is an object predicate.

Theorem 24 Let T be a probabilistic theory and let 〈x̄/τ̄ | P (r̄)〉 be a prim-
itive t-query where P is an object predicate, let x̄ = (x1, . . . , xn), and let r̄ =
(r1, . . . , rm) is a m-tuple of object constants and/or variables from x1, . . . , xn.
Suppose further for j = 1, . . . , n, that rij is the first occurrence of xj in r.
Then

{x̄/τ̄ | P (r̄)}t = | τ̄ |t ∩ πi1...inσF (r̄,x̄)(|P |t). (4)

Proof. Let Qt = 〈x̄/τ̄ | P (r̄)〉. Then c̄/ϕ belongs to the left-hand side of (4)
iff

(1) T ` τ̄(c̄);
(2) T ` w(P (r̄c̄|x̄)) > 0;
(3) T ` ϕ ↔ P (r̄c̄|x̄); and
(4) There is no atom P in ϕ such that T ` P or T ` ¬P .

By Lemma 17, T ` τ̄(c̄) iff c̄/ true ∈ | τ̄ |t. By Lemma 18, (2) is verified iff
either r̄c̄|x̄/ true or r̄c̄|x̄/P (r̄c̄|x̄) belongs to |P |t. Also, by Lemma 20, (2) is
verified iff T 6` ¬P (r̄c̄|x̄).

Notice that r̄c̄|x̄/ϕ ∈ |P |t iff r̄c̄|x̄/ϕ ∈ σF (r̄,x̄)(|P |t) iff c̄/ϕ ∈ πi1...inσF (r̄,x̄)(|P |t).
Also, notice that ϕ cannot be equal to false since in that case, by (3), it follows
that T ` ¬P (r̄c̄|x̄) and T ` w(P (r̄c̄|x̄)) = 0, contradicting (2). Hence, (3) and
(4) are verified iff either ϕ = true or ϕ = P (r̄c̄|x̄).

If ϕ = true, then T ` P (r̄c̄|x̄) and T ` w(P (r̄c̄|x̄)) = 1. Notice that r̄c̄|x̄/P (r̄c̄|x̄)
6∈ |P |t, since in that case, P is an object predicate whose third extension axiom
is

(∀x̄)(∀yf)(w(P (x̄)) = yf ∧ 0 < yf < 1 ↔ (x̄ = d̄(1) ∧ yf = p1) ∨ . . .

20

∨ (x̄ = d̄(s) ∧ yf = ps)),

contradiction. Therefore, r̄c̄|x̄/ true ∈ |P |t, c̄/ true ∈ πi1...inσF (r̄,x̄)(|P |t), and
then c̄/ true belongs to the right-hand side of (4).

If ϕ = P (r̄c̄|x̄), then T 6` P (r̄c̄|x̄) and by (2), T 6` ¬P (r̄c̄|x̄). Thus, P cannot
be the equality or a simple type because in those cases, either T ` P (r̄c̄|x̄) or
T ` ¬P (r̄c̄|x̄). Thus, P is an object predicate whose extension axioms are

(∀x̄)(P (x̄) → x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) ∨ x̄ = d̄(1) ∨ . . . ∨ x̄ = d̄(s)),

(∀x̄)(x̄ = c̄(1) ∨ . . . ∨ x̄ = c̄(r) → P (x̄)),

(∀x̄)(∀yf)(w(P (x̄)) = yf ∧ 0 < yf < 1 ↔ (x̄ = d̄(1) ∧ yf = p1) ∨ . . .

∨ (x̄ = d̄(s) ∧ yf = ps)),

By standard equality reasoning, since T 6` P (r̄c̄|x̄) and T 6` ¬P (r̄c̄|x̄), then

T ` r̄c̄|x̄ = d̄(1) ∨ . . . ∨ r̄c̄|x̄ = d̄(s). Hence, r̄c̄|x̄/P (r̄c̄|x̄) ∈ |P |t and c̄/P (r̄c̄|x̄)
belongs to the right-hand side of (4). 2

For example, the above theorem states that the answer to Qt = 〈x/τ, y/θ |
P (a, x, y, x)〉t is given by ‖Qt ‖ = (|τ |t × |θ |t) ∩ π2,3σ1=a∧2=4(|P |t).

The following theorem shows how to obtain the answer to primitive t-queries
of the form 〈x̄/τ̄ | ¬P (r̄)〉 where P is an object predicate.

Theorem 25 Let T be a probabilistic theory and let 〈x̄/τ̄ | ¬P (r̄)〉 be a
primitive t-query where P is an object predicate, x̄ = (x1, . . . , xn), and r̄ =
(r1, . . . , rm) is a m-tuple of object constants and/or variables from x1, . . . , xn.
Suppose further for j = 1, . . . , n, that rij is the first occurrence of xj in r.
Then

{x̄/τ̄ | ¬P (r̄)}t = | τ̄ |t − πi1...inσF (r̄,x̄)(|P |t). (5)

Proof. Similar to the proof of Theorem 24. 2

For example, the above theorem is used for answering the query

〈s/stud, p/Λ | w(¬takes(s, Algebra)) = p〉

which asks for the tuples 〈s, p〉 such that p is the probability that student t
does not take the course of Algebra.

21

For primitive t-queries involving the object equality, we have similar results
as in [30] .

Theorem 26 Let T be a probabilistic theory and let a and b be two constants.
Then

– { | a = b}t = {()} if a and b are identical constants,
= {} otherwise.

– {x/τ | x = x}t = |τ |t.
– {x/τ | x = a}t = {a/ true} if a/ true ∈ |τ |t,

= {} otherwise.

– {x/τ, y/θ | x = y}t = {(c, c)/ true | c/ true ∈ |τ |t ∧ c/ true ∈ |θ |t}.
– { | a 6= b} = {()} if a and b are distinct constants,

= {} otherwise.
– {x/τ | x 6= x}t = {}.
– {x/τ | x 6= a}t = |τ |t − {a/ true}.
– {x/τ, y/θ | x 6= y}t = {(a, b)/ true | a/ true ∈ |τ |t ∧ b/ true ∈ |θ |t

and a and b are distinct constants}. 2

4.4 Compound t-queries

The next two theorems allow to recursively decompose t-queries containing
conjunctions and disjunctions.

Theorem 27 If T is a probabilistic theory and if F1, F2 are first-order for-
mulas with type-restricted quantifiers, then

{x̄/τ̄ | F1(x̄) ∧ F2(x̄)}t = {x̄/τ̄ | F1(x̄)}t ∩ {x̄/τ̄ | F2(x̄)}t. (6)

Proof. Consider Qt = 〈x̄/τ̄ | F1(x̄) ∧ F2(x̄)〉 and its subqueries Qt
1 = 〈x̄/τ̄ |

F1(x̄)〉, and Qt
2 = 〈x̄/τ̄ , | F2(x̄)〉. By definition of intersection in t-relations,

c̄/ϕ belongs to the right-hand side of (6) iff c̄/ϕ1 ∈ ‖Qt
1 ‖, c̄/ϕ2 ∈ ‖Qt

2 ‖ and
ϕ = ϕ1 ∧ ϕ2. Thus we have T ` τ̄(c̄), we have

(1a) T ` w(F1(c̄)) > 0, (1b) T ` w(F2(c̄)) > 0,
(2a) T ` ϕ1 ↔ F1(c̄), (2b) T ` ϕ2 ↔ F2(c̄),

and there is no atom P in ϕ1 or in ϕ2 such that T ` P or T ` ¬P . The last
condition is obviously verified for the formula ϕ1∧ϕ2. Furthermore, by Lemma
19, (1a) and (1b) are verified iff T ` w(F1(c̄)∧F2(c̄)) > 0. Finally, by standard
first-order reasoning, (2a) and (2b) are verified iff T ` ϕ1∧ϕ2 ↔ F1(c̄)∧F2(c̄)
and we arrive at the result. 2

22

For example, the above theorem is used for answering the query

〈s/stud, p/Λ | w(takes(s, Algebra) ∧
(∃c/course)(teaches(Marie, c) ∧ takes(s, c))) = p〉

which asks for the tuples 〈s, p〉 such that p is the probability that student s
takes the course of Algebra and at least one course teached by Marie.

Theorem 28 If T is a probabilistic theory and if F1, F2 are first-order for-
mulas with type-restricted quantifiers, then

{x̄/τ̄ | F1(x̄) ∨ F2(x̄)}t = {x̄/τ̄ | F1(x̄)}t ∪ {x̄/τ̄ | F2(x̄)}t. (7)

Proof. Consider Qt = 〈x̄/τ̄ | F1(x̄) ∨ F2(x̄)〉 and its subqueries Qt
1 = 〈x̄/τ̄ |

F1(x̄)〉, and Qt
2 = 〈x̄/τ̄ | F2(x̄)〉. By definition of union in t-relations, c̄/ϕ

belongs to the right-hand side of (7) iff one of the following cases is verified:

(1) there is a formula ϕ1 such that c̄/ϕ1 ∈ ‖Q1 ‖t but there is no c̄/ϕ2 ∈
‖Q2 ‖t and ϕ = ϕ1;

(2) there is a formula ϕ2 such that c̄/ϕ2 ∈ ‖Q2 ‖t but there is no c̄/ϕ1 ∈
‖Q1 ‖t and ϕ = ϕ2; or

(3) there are formulas ϕ1, ϕ2 such that c̄/ϕ1 ∈ ‖Q1 ‖t, c̄/ϕ2 ∈ ‖Q2 ‖t and
ϕ = ϕ1 ∨ ϕ2.

In all the cases we have T ` τ̄(c̄). Let us analyze (1). We have T ` ϕ1 ↔
F1(c̄), T ` w(F1(c̄)) > 0 and, by Lemma 1, T ` w(F1(c̄) ∨ F2(c̄)) > 0.
Since by Lemma 21, T ` w(F2(c̄)) = 0, by Lemma 20, T ` ¬F2(c̄), i.e.,
T ` false ↔ F2(c̄). Thus, T ` ϕ ↔ F1(c̄) ∨ F2(c̄) and the result follows. The
proof for (2) is similar.

Let us analyze case (3). Since c̄/ϕ1 ∈ ‖Qt
1 ‖, c̄/ϕ2 ∈ ‖Qt

2 ‖ and ϕ = ϕ1 ∨ ϕ2,
we have

(1a) T ` w(F1(c̄)) > 0, (1b) T ` w(F2(c̄)) > 0,
(2a) T ` ϕ1 ↔ F1(c̄), (2b) T ` ϕ2 ↔ F2(c̄),

and there is no atom P in ϕ1 or in ϕ2 such that T ` P or T ` ¬P . The last
condition is obviously verified for the formula ϕ1∨ϕ2. Furthermore, by Lemma
1, from (1a) and (1b) it follows T ` w(F1(c̄)∨F2(c̄)) > 0. Finally, by standard
first-order reasoning, (2a) and (2b) are verified iff T ` ϕ1∨ϕ2 ↔ F1(c̄)∨F2(c̄)
and we arrive at the result. 2

For example, the above theorem is used for answering the query

〈s/stud, p/Λ | w(¬takes(s, Algebra) ∨ takes(s, Calculus)) = p〉

23

which asks for the tuples 〈s, p〉 such that p is the probability that if student s
takes the Algebra course then it takes also the Calculus course.

The following two theorems enable to remove quantifiers in queries.

Theorem 29 Let T be a probabilistic theory and F (x̄, y) a possibly quantified
first-order formula with free variables among x̄ = (x1, . . . , xn) and y. Then

(1) If |θ |t = {} then {x̄/τ̄ | (∀y/θ)F (x̄, y)}t = | τ̄ |t.
(2) If |θ |t 6= {} then

{x̄/τ̄ | (∀y/θ)F (x̄, y)}t = {x̄/τ̄ , y/θ | F (x̄, y)}t ÷ |θ |t. (8)

Proof. Consider a query Qt = 〈x̄/τ̄ | (∀y/θ)F (x̄, y)〉 and its subquery Qt
1 =

〈x̄/τ̄ , y/θ | F (x̄, y)〉. We begin by proving (1). If |θ |t = {}, then θ’s extension
axiom in T is (∀x)¬θ(x) and thus T ` [(∀y)θ(y) → F (c̄, y))] ↔ true. Hence,
c̄/ true ∈ ‖Qt ‖ iff c̄/ true ∈ | τ̄ |t.

For (2), suppose that θ’s extension axiom in T is (∀x)(θ(x) ↔ x = c(1)∨ . . .∨
x = c(r)). Then, T ` (∀y/θ)F (x̄, y) ↔ ∧r

i=1 F (c̄, c(i)). By definition of division
in t-relations, c̄/ϕ belongs to the right-hand side of (8) iff {c̄c1/ϕ1, . . . , c̄cr/ϕr}
⊆ ‖Q1 ‖t and ϕ =

∧r
i=1 ϕi. By definition of answers to t-queries, we have

for i = 1, . . . , r, T ` ϕi ↔ F (c̄, ci), and T ` w(F (c̄, ci)) > 0. Then, T `
(
∧r

i=1 ϕ) ↔ (
∧r

i=1 F (c̄, ci)), and by Lemma 19, T ` w(
∧r

i=1 F (c̄, ci)) > 0. Thus,
c̄/ϕ belongs to the left-hand side of (8). 2

For example, the above theorem is used for answering the query

〈c/course, p/Λ | w((∀s/stud)¬takes(s, c)) = p〉

which asks for the tuples 〈c, p〉 such that p is the probability that course c is
taken by no student.

Theorem 30 Let T be a probabilistic theory and F (x̄, y) a possibly quantified
first-order formula with free variables among x̄ = (x1, . . . , xn) and y. Then

(1) If |θ |t = {} then {x̄/τ̄ | (∃y/θ)F (x̄, y)}t = {}.
(2) If |θ |t 6= {} then

{x̄/τ̄ | (∃y/θ)F (x̄, y)}t = πx̄,y({x̄/τ̄ , y/θ | F (x̄, y)}t). (9)

Proof. Consider a query Qt = 〈x̄/τ̄ | (∃y/θ)F (x̄, y)〉 and its subquery Qt
1 =

〈x̄/τ̄ , y/θ | F (x̄, y)〉. We begin by proving (1). If |θ |t = {} then θ’s extension
axiom in T is (∀x)¬θ(x) and thus T ` [(∃y)θ(y)∧ F (c̄, y))] ↔ false. Since by

24

Lemma 1 w(false) = 0, no c̄/ϕ satisfies the conditions for answers to t-queries
and then ‖Qt ‖ = {}.

For (2), suppose that θ’s extension axiom in T is (∀x)(θ(x) ↔ x = c(1) ∨
. . . ∨ x = c(r)). Then, T ` (∃y/θ)F (x̄, y) ↔ ∨r

i=1 F (c̄, c(i)). By definition of
projection in t-relations, c̄/ϕ belongs to the right-hand side of (9) iff there
is a k (1 ≤ k ≤ r) such that {i1, . . . , ir} is a permutation of {1, . . . , r},
{c̄ci1/ϕi1 , . . . , c̄cikϕik} ⊆ ‖Q1 ‖t and ϕ =

∨k
j=1 ϕij . By definition of answers to

t-queries, we have for j = 1, . . . , k, T ` ϕij ↔ F (c̄, cij), and by Lemma

1, T ` w(F (c̄, cij)) > 0. Then, T ` (
∨k

i=1 ϕij) ↔ (
∨k

i=1 F (c̄, cij)), T `
w(

∨k
i=1 F (c̄, cij)) > 0 and thus, c̄/ϕ belongs to the left-hand side of (9). 2

For example, the above theorem is used for answering the query

〈t/prof, s/stud, p/Λ | w((∃c/course)(teaches(t, c) ∧ takes(s, c))) = p〉

which asks for the tuples 〈t, s, p〉 such that p is the probability that student s
takes at least one course c given by professor t.

Finally, the following theorem allow us to remove query variables which do
not appear in the formula of the query. The easy proof is left to the reader.

Theorem 31 Let T be a probabilistic theory and let F (x̄) be a formula in
which variable y does not occur free. Then

(1) {y/θ, x̄/τ̄ | F (x̄)}t = |θ |t × {x̄/τ̄ | F (x̄)}t.
(2) If for n ≥ 1, x̄/τ̄ = x1/τ1, . . . , xn/τn and for k ≥ 0, z̄/φ̄ = z1/φ1, . . . ,

zn/φk, then

{x̄/τ̄ , y/θ, z̄/φ̄ | F (x̄, z̄)}t =

π2,...,n+1,1,n+2,...,n+k+1(|θ |t × {x̄/τ̄ , z̄/φ̄ | F (x̄, z̄)}t).

Notice that the projection for case (2) above is needed only to permute the
attributes of the answer in the right-hand side in the same order as the query
variables in the left-hand side.

4.5 Evaluation of t-queries

As pointed out in Section 4, in order to evaluate first-order queries of the
form Q = 〈x̄/τ̄ , yf/Λ | w(F (x̄)) = yf〉 where F is a first-order formula, we
associate to Q a t-query Qt = 〈x̄/τ̄ | F (x̄)〉. The answer to such a t-query Qt

is composed of a set of tuples c̄/ϕ where ϕ is a propositional formula. This set
of tuples can be seen as a t-relation.

25

All along the preceding sections we have studied the evaluation of t-queries.
In this section we study how to obtain the answer to a first-order query Q
from the answers to its associated t-query Qt. Recall that the answer to a
first-order query Q is a set of tuples (c̄, p) such that c̄ satisfies the simple
types τ̄ , p ∈]0, 1], and T ` w(F (c̄)) = p.

First, we show how to compute the probability of a formula ϕ from FT in
a probabilistic theory T . As in [34] , we first transform ϕ into a formula
in disjunctive canonical form ϕ′ = D1 ∨ . . . ∨ Dn where each conjunct Di

contains every atom appearing in ϕ. Therefore we can obtain w(ϕ) = w(ϕ′) =
w(D1) + · · ·+ w(Dn). This is shown in the next example.

Example 32 Let ϕ = AB ∨ AC ∨ BC be a formula where {A, B, C} are
ground atoms, and suppose that, in a probabilistic theory T , the probability
of A is a, the probability of B is b, and so on, and let p̄ = 1 − p for each
probability p. The disjunctive canonical form is obtained by expanding ϕ as
follows

ϕ′ = AB(C ∨ C) ∨ A(B ∨B)C ∨ (A ∨ A)BC

= ABC ∨ AB C ∨ ABC ∨ ABC.

Since every disjunct in ϕ′ is mutually exclusive then

w(ϕ′) = w(ABC) + w(AB C) + w(ABC) + w(A BC)

= abc + abc + abc + abc.

An arbitrary trace formula ϕ involving n different atoms, can be interpreted
as a Boolean function over n variables. Thus, ϕ can be transformed into dis-
junctive canonical form using a classical result in Boolean algebra (e.g. [20]).
Indeed, every Boolean function f(x1, . . . , xn) can be expressed in the disjunc-
tive canonical form by

f(x1, . . . , xn) =
ē=〈1,...,1〉∨

ē=〈0,...,0〉
f(e1, . . . , en)xe1

1 · · ·xen
n ,

where ei = 0 or 1, x0
j = x̄j, x1

j = xj, ē = 〈e1, . . . , en〉 is an n-tuple of 0’s and
1’s, and the union extends over all 2n combinations of n 0’s and 1’s for the
ei’s.

Intuitively, the value of f(e1, . . . , en) is equal to 0 or 1. If f(e1, . . . , en) = 0
the term xe1

1 · · ·xen
n is absent (has a 0 multiplier) in the canonical form and

if f(e1, . . . , en) = 1 the term xe1
1 · · · xen

n appears (has a 1 multiplier) in the
canonical form.

26

Consider again formula ϕ = AB ∨ AC ∨ BD ∨ CD of the previous example.
Since there are 3 atoms, we evaluate ϕ for each of the eigth possible three-
tuples 〈e1, e2, e3〉

ϕ(0, 0, 1) = ϕ(0, 1, 1) = ϕ(1, 0, 0) = ϕ(1, 0, 1) = 1

ϕ(0, 0, 0) = ϕ(0, 1, 0) = ϕ(1, 1, 0) = ϕ(1, 1, 1) = 0.

Thus the disjunctive canonical form of ϕ has 4 terms ABC ∨ABC ∨AB C ∨
ABC, as found in the previous example by expanding ϕ.

The next example shows how to split a formula ϕ into subformulas ϕi, such
that each subformula can be evaluated independently.

Example 33 Let {A,B, C, D, E, F, G, H} be atomic formulas, consider ϕ =
AB ∨ AC ∨ BD ∨ EFG ∨ FH ∨ GH, and suppose that the probability of A
is a, the probability of B is b, and so on. We draw a graph containing a node
for each conjunct of ϕ and we establish the interrelations of conjuncts. This
graph is constructed in two phases.

First, two nodes are linked if they share a literal. For example, nodes 1 and 2
are linked since A appears in the first two conjuncts. The second phase consists
in making the transitive closure of links, that is, if node i is linked to node j
and if the latter is linked to node k, then nodes i and k are linked. This yields
the following graph.

±°
²¯
1

±°
²¯
2 ±°

²¯
3

¡
¡

¡
¡

±°
²¯
4 ±°

²¯
5

±°
²¯
6

¡
¡

¡
¡

Since we obtain two disjoint subgraphs, the subformulas ϕ1 = AB ∨AC ∨BD
and ϕ2 = EFG ∨ FH ∨ GH are independent. Therefore, each one of these
subformulas can be independently evaluated. Thus, w(ϕ1) = ab + ac − abc +
bd− abd and w(ϕ2) = efg − efgh + fh− fgh + gh.

Since in probabilistic theories ` w(ϕ1∨ϕ2) = 1−w(¬ϕ1∧¬ϕ2) = 1−(w(¬ϕ1)×
w(¬ϕ2)), then w(ϕ) = 1− (1− w(ϕ1))(1− w(ϕ2)).

We now introduce a mapping EVAL which transforms a set of t-tuples c̄/ϕ
into a set of tuples (c̄, p) given a probabilistic theory T .

Definition 34 Given a probabilistic theory T and a t-relation R, EVAL(R) =
S is given by

S = {(c̄, p) | c̄/ϕ ∈ R ∧ eval(ϕ) = p}

27

where eval(ϕ) is obtained by computing the probability of the disjunctive canon-
ical form of ϕ as in the examples above.

We are now able to prove that the answer to a first-order query Q can be
obtained applying the mapping EVAL to the answer to its associated t-query
Qt. The following result is easily verified.

Theorem 35 Let T be a probabilistic theory, Q = 〈x̄/τ̄ , yf/Λ | w(F (x̄)) =
yf〉 a first-order query, and Qt its associated t-query.
Then ‖Q‖ = EVAL(‖Qt ‖). 2

We next give some results about the complexity of evaluating first-order
queries.

Definition 36 For a trace formula ϕ, we define the length |ϕ | as the number
of distinct atoms appearing in ϕ.

Let Qt be a t-query, let E be an algebraic expression computing Qt, let ‖E ‖
be the t-relation resulting from evaluating E over a given theory T , and let
card(‖E ‖) be the number of tuples in ‖E ‖. We establish the complexity of
Qt by giving an upper bound on the length of the trace formulas ϕ appearing
in ‖E ‖.

Theorem 37 For an algebraic expression E over t-relations, the upper bound
|E | on the length of the trace formulas in ‖E ‖ is computed inductively as
follows:

(1) If E ≡ Rt where Rt is a t-relation then |E | = 1.
(2) If E ≡ σ(E1) then |E | = |E1 |.
(3) If E ≡ π(E1) then |E | = k |E1 | where card(‖E1 ‖) = m, card(‖E ‖) = n

and k = m− n + 1.
(4) If E ≡ E1 op E2 then |E | = |E1 | + |E2 |, where op is one of ∪, ∩, ×,

and 1.
(5) If E ≡ E1 ÷ E2 then |E | = k2 |E1 | |E2 |, where card(‖E2 ‖) = k.

Proof. We consider only projection and division, since the other results fol-
lows from the definition of the operators.

For projection, suppose that ‖E1 ‖ has m tuples and that ‖E ‖ has n tuples
where m > n. Intuitively this means that several tuples {c̄d̄1/ϕ1, . . . , c̄d̄j/ϕj}
of ‖E1 ‖ are replaced by a tuple c̄/ϕ1 ∨ . . . ∨ ϕj in ‖E ‖. Therefore, at worst,
the longest formula in ‖E ‖ will be k = m − n + 1 times the longest formula
in ‖E1 ‖.

For division, if ‖E2 ‖ has k tuples, then the result follows since a tuple in ‖E ‖

28

is obtained by combining at most k tuples in ‖E1 ‖ with k tuples in ‖E2 ‖. 2

Notice that in our evaluation algorithm, we only divide a t-relation by a clas-
sical relation (corresponding to a simple type). In this particular case, result
(5) above becomes

(5’) If E ≡ E1 ÷ E2 then |E | = k |E1 | where card(‖E2 ‖) = k.

We conclude by showing how the results of this section are used for recursively
decompose queries during query evaluation. Consider the query

Q = 〈t/prof, s/stud, p/Λ | w((∃c/course)(teaches(t, c) ∧ takes(s, c))) = p〉

already given in Section 4.4. The answer ‖Q‖ is computed as follows

EVAL({t/prof, s/stud | (∃c/course)(teaches(t, c) ∧ takes(s, c))}t)

EVAL(π1,2{t/prof, s/stud, c/course | teaches(t, c) ∧ takes(s, c)}t)

EVAL(π1,2({t/prof, s/stud, c/course | teaches(t, c)}t∩
{t/prof, s/stud, c/course | takes(s, c)}t))

EVAL(π1,2(π2,1,3(|stud |t × {t/prof, c/course | teaches(t, c)}t)∩
(|prof |t × {s/stud, c/course | takes(s, c)}t)))

EVAL(π1,2(π2,1,3(|stud |t × (|prof |t × |course |t) ∩ |teaches |t)∩
(|prof |t × (|stud |t × |course |) ∩ |takes |t))))

Of course, multiple optimizations in the above decomposition are possible.
However, the optimization of these algebraic expressions goes beyond the scope
of this paper.

5 Probabilistic queries

So far, we have studied first-order queries of the form 〈x̄/τ̄ , yf/Λ | w(F (x̄)) =
yf〉, where F is a first-order formula. We now study general queries of the
form Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉, where F is an arbitrary formula. First, we
need a definition.

Definition 38 Consider a sequence τ̄ = τ1, . . . , τn of simple types. We asso-
ciate to τ̄ a classical relation | τ̄ | projecting out the trace attribute from | τ̄ |t.

29

Now, we make some minor restrictions in the form of probabilistic queries,
restrictions which are motivated in the sequel.

Definition 39 (Restriction to single-order formulas) In a probabilistic lan-
guage L, a formula F is said to be higher-order if F contains nested probabil-
ity terms such as w(w(P (x)) < w(Q(x))) = 0.7. Similarly, a query Q is said
to be higher-order if its formula is a higher-order formula.

It is easy to verify that higher-order formulas of the form w(w(F1) θ w(F2)),
where θ is a comparison operator, always take either the value 1 or the value
0. Indeed, the inner term w(F1) θ w(F2) may be replaced either by true or
by false, depending on whether the term is verifed or not. For this reason,
we consider only single-order queries. This is not really a restriction since a
higher-order query can be translated into an equivalent single-order one.

For example, let Q be the query 〈x/τ | w(w(P (x)) > w(R(x))) = c〉. If c = 1,
then Q is equivalent to 〈x/τ | w(P (x)) > w(R(x))〉. If c = 0, then Q is
equivalent to 〈x/τ | w(P (x)) ≤ w(R(x))〉. Otherwise, if 0 < c < 1, then Q is
equivalent to 〈x/τ | false〉.

Definition 40 (Evaluable queries) As it is well-known, not all queries in rela-
tional calculus can be answered sensibly when disjunction, negation, and uni-
versal quantification are allowed. The class of relational calculus queries or
formulas that have sensible answers is called the domain independent class
which is known to be undecidable. A large decidable subclass of domain inde-
pendent formulas, called evaluable formulas, is defined in [37] . It comprises all
other known subclasses of domain independent formulas such as range separa-
ble, range restricted, allowed or safe formulas. Further, the class of evaluable
formulas is the largest decidable subclass of domain independent formulas that
can be efficiently recognized.

The class of evaluable queries is defined as follows.

Definition 41 [37] Let F be a formula where

dnf(F) = %z̄(D1 ∨ . . . ∨Dn) and cnf(F) = %z̄(C1 ∧ . . . ∧ Cm)

are the conjunctive and disjunctive normal forms of F , and where % denotes
a sequence of (possible mixed) quantifiers ∃ and ∀. Let θ be a comparison
predicate and t a variable or a constant. Suppose also that F contains no
negated comparison predicates, excepted 6= (i.e. ¬ > is replaced by ≤). Then
F is said to be evaluable iff the following properties hold:

(1) For every free variable x in F , x occurs in a positive literal (other than
x = y or x θ t) in every Dj.

30

(2) For every existentially quantifed variable x in F , x occurs in a positive
literal (other than x = y or x θ t) in every Dj in which x occurs.

(3) For every universally quantifed variable x in F , x occurs in a negative
literal (other than x 6= y) in every Cj in which x occurs.

Notice that for a field variable yf , saying that yf appears in a positive (resp.
negative) litteral in a formula F means that w(G) = yf (resp. w(G) 6= yf)
appears in F .

For example, the queries Q1 = 〈x/τ, yf/Λ | w(P (x)) = yf ∧ yf > 0.5〉, Q2 =
〈x/τ, yf/Λ | w(P (x)) = yf ∨w(Q(x)) = yf〉 are evaluable, whereas the queries
Q′

1 = 〈x/τ, yf/Λ, zf/Λ | w(P (x)) = yf∧zf > yf〉, and Q′
2 = 〈x/τ, yf/Λ, zf/Λ |

w(P (x)) = yf ∨ w(Q(x)) = zf〉, and Q′
3 = 〈x/τ, yf/Λ | w(F (x, z)) = yf ∨

w(F (x, z)) 6= yf〉 are not evaluable.

Consider a probabilistic query Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉 where F is an
arbitrary formula. Since the domain Λ is not finite, it is necessary that F be
evaluable, otherwise ‖Q‖ would not be finite. For example, query Q′

2 has an
infinite number of answers since for each pair (c, p) such that T ` w(P (c)) = p,
there are infinitely many q ∈ Λ such that (c, p, q) ∈ ‖Q′

2 ‖.

Finally, note that for queries Q = 〈x̄/τ̄ | F (x̄)〉 having no free field variables,
since in probabilistic theories every simple type is finite, then ‖Q‖ has as most
the same number of answers as in | τ̄ |. Therefore ‖Q‖ is finite, even if F is
not evaluable.

In the following, we always suppose that queries are evaluable. Further we say
that a formula F instantiates the field variable yf if F is evaluable and yf

appears in F .

For example, the query 〈x/τ, yf/Λ, zf/Λ | w(F1(x)) = yf ∧ w(F2(x)) = zf〉
instantiates variables yf and zf , whereas for the query 〈x/τ, yf/Λ | w(F1(x)) =
yf ∧ w(F2(x)) > yf〉, if we define the subqueries 〈x/τ, yf/Λ | w(F1(x)) = yf〉
and 〈x/τ, yf/Λ | w(F2(x)) > yf〉, the latter subquery does not instantiate yf .

5.1 Primitive probabilistic queries

We define a query as primitive probabilistic if it has one of the forms

〈x̄/τ̄ , yf/Λ | w(F1(x̄)) = yf〉, 〈x̄/τ̄ | w(F1(x̄)) θ c〉, or

〈x̄/τ̄ | w(F1(x̄)) θ w(F2(x̄))〉
where F1 and F2 are first-order formulas and θ is a comparison predicate.
The evaluation of the first type of queries has been studied in Section 4. The

31

following theorems state how to compute the answers for the other two types.
Some easy proofs are left to the reader.

Theorem 42 Let T be a probabilistic theory, let F (x̄) be a first-order formula,
let p be a real number belonging to]0, 1], and let θ be a comparison predicate.
Then

{x̄/τ̄ | w(F (x̄)) θ p} = πx̄σyf θ p({x̄/τ̄ , yf/Λ | w(F (x̄)) = yf}).

The above theorem allows to evaluate queries such as

〈s/stud | w((∀c/course)(teaches(Anne, c) → takes(s, c))) > 0.5)〉

which asks for the students taking all courses given by Anne with a probability
greater than 0.5.

Theorem 43 Let T be a probabilistic theory, and let F (x̄) be a first-order
formula. Then

(1) {x̄/τ̄ | w(F (x̄)) > 0} = πx̄({x̄/τ̄ , yf/Λ | w(F (x̄)) = yf}).
(2) {x̄/τ̄ | w(F (x̄)) = 0} = | τ̄ | − πx̄({x̄/τ̄ , yf/Λ | w(F (x̄)) = yf}). 2

Intuitively, the query in (1) asks for tuples c̄ ∈ τ̄ satisfying F with a probability
greater than 0. The answer to this query is obtained from the expression in
the right-hand side by definition of query answers. Notice also that the query
in (2) is equivalent to the query {x̄/τ̄ | ¬F (x̄)} and is obtained by making the
difference of | τ̄ | and the answer to the query in (1).

The above theorem allows to evaluate queries such as

〈t/prof | w((∃c/course)(course dep(c, ‘EE’) ∧ teaches(t, c)) = 0)〉

which asks for the professors which for sure do not give at least one course in
the ‘EE’ department.

Theorem 44 Let T be a probabilistic theory, let F1(x̄) and F2(x̄) be first-
order formulas and let Q = 〈x̄/τ̄ | w(F1(x̄)) = w(F2(x̄))〉 be a query. If we
define the subqueries Q1 = 〈x̄/τ̄ , yf/Λ | w(F1(x̄)) = yf〉 and Q2 = 〈x̄/τ̄ , zf/Λ |
w(F2(x̄)) = zf〉, then

‖Q‖= πx̄σyf=zf (‖Q1 ‖ 1x̄ ‖Q2 ‖) ∪
(| τ̄ | − πx̄(‖Q1 ‖)) ∩ (| τ̄ | − πx̄(‖Q2 ‖)). (10)

32

Proof. By definition of query answers, if p is a real number belonging to]0, 1]
and if c̄ is a tuple of object constants, then c̄ belongs to the left-hand side of
(10) iff (1) T ` τ̄(c̄); and (2) T ` w(F1(c̄)) = w(F2(c̄)) = p. We have to
distinguish two cases depending on whether (3) T ` p = 0 or (4) T ` p 6= 0.

Let us analyze the first case. If p1 and p2 are real numbers belonging to]0, 1],
then (c̄, p1, p2) ∈ (‖Q1 ‖ 1x̄ ‖Q2 ‖) iff

– T ` τ̄(c̄);
– T ` Λ(pi) 6= 0 for i = 1, 2;
– T ` pi 6= 0 for i = 1, 2; and
– T ` w(Fi(c̄)) = pi for i = 1, 2.

Furthermore, (c̄, p1, p2) ∈ σyf=zf (‖Q1 ‖ 1 ‖Q2 ‖) iff in addition to the above
conditions T ` p1 = p2. By standard equality reasoning and by definition of
classical projection, it follows that c̄ ∈ πx̄σyf=zf (‖Q1 ‖ 1 ‖Q2 ‖) iff conditions
(1)–(3) are verified.

For the second case, by Theorem 43, we have {x̄/τ̄ | w(Fi(x̄)) = 0} = | τ̄ | −
πx̄(‖Qi ‖), for i = 1, 2. The result follows since c̄ ∈ (| τ̄ |−πx̄(‖Q1 ‖))∩(| τ̄ |−
πx̄(‖Q2 ‖)) iff conditions (1), (2), and (4) are verified. 2

Intuitively, the above theorem states that the answer to ‖Q‖ is composed of
two parts. The first one is the set of tuples c̄ such that 〈c̄, p〉 ∈ ‖Q1 ‖ and
〈c̄, p〉 ∈ ‖Q2 ‖ for a probability p > 0. The second part of the answer is the set
of tuples c̄ having probability 0 in both Q1 and Q2.

Theorem 45 Let T be a probabilistic theory, let F1(x̄), F2(x̄) be first-order
formulas, and let Q = 〈x̄/τ̄ | w(F1(x̄)) > w(F2(x̄))〉 be a query. If we define
the subqueries Q1 = 〈x̄/τ̄ , yf/Λ | w(F1(x̄)) = yf〉 and Q2 = 〈x̄/τ̄ , zf/Λ |
w(F2(x̄)) = zf〉, then

‖Q‖ = πx̄σyf >zf (‖Q1 ‖ 1x̄ ‖Q2 ‖) ∪ [πx̄(‖Q1 ‖) ∩ (| τ̄ | − πx̄(‖Q2 ‖))].

Proof. Similar to the proof of Theorem 44. 2

Intuitively, the above theorem states that the answer to ‖Q‖ is composed of
two parts. The first one is the set of tuples c̄ such that 〈c̄, p〉 ∈ ‖Q1 ‖ and
〈c̄, q〉 ∈ ‖Q2 ‖ for probabilities p, q > 0 provided that p > q. The second part
of the answer is the set of tuples c̄ having probability greater than 0 in Q1 and
having probability 0 in Q2.

The above theorem allows to evaluate queries such as

〈c/course | w((∃s/stud)takes(s, c)) > w(¬(∃s/stud)takes(s, c))〉

33

which asks for the courses such that the probability that at least one student
takes the course is greater than the probability that no student takes the
course.

5.2 Compound probabilistic queries

Consider a compound probabilistic query Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉, where
ȳf = 〈yf

1 , . . . , yf
n〉. For ease of evaluation, let F ′ be the formula obtained from

F by rewriting every subformula of the form w(G(x̄)) θ yf
i , where θ is a

comparison operator distinct from =, as w(G(x̄)) = zf
i ∧ zf

i θ yf
i , the zf

i being
variables not appearing in F . Furthermore, let H(ȳf , z̄f) be the conjunction
of all formulas zf

i θ yf
i . It is easy to verify that

{x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)} =

πx̄,ȳf σH(ȳf ,z̄f)({x̄/τ̄ , ȳf/Λ̄, z̄f/Λ̄ | F ′(x̄, ȳf , z̄f)}).

Therefore, we suppose in the sequel that queries are rewritten in the above
manner.

5.2.1 Conjunction

We first define a set of formulas R restricting the values that field variables
can take. Since the domain Λ is not finite, we have to distinguish the case
where a query have a subformula in R.

Definition 46 Given a probabilistic theory T , we form the set of formulas R
by starting with yf θ c and yf θ zf where yf , zf are field variables and θ is
a comparison predicate, and closing off under conjunction, disjunction, and
negation.

For example, xf > yf ∧ yf = zf ∨ xf = 1.0 is a formula in R.

Consider a query Q = 〈x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf) ∧ F2(x̄, ȳf)〉. We have to study
different cases depending on the form of formulas F1 and F2. If both F1 and
F2 instantiate every field variable from ȳf , the answer to Q is obtained from
the intersection of the subqueries.

Theorem 47 Let T be a probabilistic theory, and let F1, F2 be formulas where
every field variable of ȳf appears free and is instantiated in both F1 and F2.
Then

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf) ∧ F2(x̄, ȳf)} =

34

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)} ∩ {x̄/τ̄ , ȳf/Λ̄ | F2(x̄, ȳf)}.

Proof. Since every field variable of ȳf appears free and is instantiated in both
F1 and F2, the proof follows from the simple fact that, if c̄, p̄ are respectively
tuples of object and field constants, then T ` F1(c̄, p̄)∧F2(c̄, p̄) iff T ` F1(c̄, p̄)
and T ` F2(c̄, p̄). 2

The next example shows what happens if some field variables do not appear
in both formulas F1 or F2.

Example 48 Consider the query

Q = 〈s/stud, p1/Λ, p2/Λ |w(takes(s,Algebra)) = p1 ∧
w(takes(s,Calculus)) = p2〉

asking for the tuples 〈s, p1, p2〉 such that p1 is the probability that student s
takes Algebra and p2 is the probability that s takes Calculus. Let be the sub-
queries Q1 = 〈s/stud, p1/Λ | w(takes(s,Algebra)) = p1∧〉 and Q2 = 〈s/stud,
p2/Λ | w(takes(s,Calculus)) = p2〉.

Suppose we have ‖Q1 ‖ = {〈Peter, 1.0〉, 〈Paul, 0.8〉} and ‖Q2 ‖ = {〈Peter, 0.9〉,
〈Mary, 0.7〉}. Although Paul satisfies Q1 with probability 0.8 he does not ap-
pears in ‖Q2 ‖, i.e. he satifies Q2 with probability 0. Since by the definition of
query answers, 〈Paul, 0.8, 0〉 belongs to ‖Q‖, we have to use the outer join to
compute the answers to Q from ‖Q1 ‖ and ‖Q2 ‖.

We give in the sequel a definition of the outer join [14,4] . We slightly modify
this definition in order to accommodate our purpose.

Definition 49 Let r1, r2 be relations of scheme R1(Ā, B̄) and R2(Ā, C̄),
where Ā is a tuple of object attributes and B̄, C̄ are tuples of field attributes.
The outer join of r1 and r2 is given by:

r1 1 r2 = r1 1 r2 ∪{(ā, b̄, 0̄) | (ā, b̄) ∈ r1 ∧ ¬(∃c̄)(ā, c̄) ∈ r2} ∪
{(ā, 0̄, c̄) | (ā, c̄) ∈ r2 ∧ ¬(∃b̄)(ā, b̄) ∈ r1}.

The outer join adds to r1 1 r2 a set of tuples (ā, b̄, 0̄) and (ā, 0̄, c̄) for the tuples
having the first attribute equal to ā and appearing respectively only in r1 or
in r2.

Consider again Example 48. By the above definition we have

‖Q1 ‖ 1 ‖Q2 ‖ = {〈Peter, 1.0, 0.9〉, 〈Paul, 0.8, 0〉, 〈Mary, 0, 0.7〉}.

35

The next theorem states that ‖Q‖ = ‖Q1 ‖ 1 ‖Q2 ‖.

Theorem 50 Let T be a probabilistic theory, and let F1(x̄, x̄f , ȳf) and
F2(x̄, ȳf , z̄f) be formulas instantiating all their field variables. Then

{x̄/τ̄ , x̄f/Λ̄, ȳf/Λ̄, z̄f/Λ̄ | F1(x̄, x̄f , ȳf) ∧ F2(x̄, ȳf , z̄f)} =

{x̄/τ̄ , x̄f/Λ̄, ȳf/Λ̄ | F1(x̄, x̄f , ȳf)} 1 x̄,ȳf

{x̄/τ̄ , ȳf/Λ̄, z̄f/Λ̄ | F2(x̄, ȳf , z̄f)}. (11)

Proof. If c̄ is a tuple of object constants and p̄1, p̄2, p̄3 are tuples of field
constants, then (c̄, p̄1, p̄2, p̄3) belongs to the left-hand side of (11) iff

– either T ` F1(c̄, p̄1, p̄2) ∧ F2(c̄, p̄2, p̄3) ∧ (p̄1, p̄2) 6= 0̄ ∧ (p̄2, p̄3) 6= 0̄;
– either T ` F1(c̄, 0̄, 0̄) ∧ F2(c̄, p̄2, p̄3) ∧ (p̄2, p̄3) 6= 0̄
– or T ` F1(c̄, p̄1, p̄2) ∧ F2(c̄, 0̄, 0̄) ∧ (p̄1, p̄2) 6= 0̄.

By definition of the outer join we arrive at the result. 2

The next theorem allows to evaluate queries of the form 〈x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)
∧F2(x̄)〉 where F2 contains no field variables.

Theorem 51 Let T be a probabilistic theory, let F1(x̄, ȳf) and F2(x̄) be for-
mulas such that F1 instantiates every field variable from ȳf . Then

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf) ∧ F2(x̄)} =

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)} 1x̄ {x̄/τ̄ | F2(x̄)}

Proof. Follows from Theorem 42 and from the definition of query answers. 2

The above theorem allows to evaluate queries such as

〈t/prof |w((∃c/course)(course dep(c, ‘EE’) ∧ teaches(t, c)) > 0.8 ∧
(∃c/course)(course dep(c, ‘CS’) ∧ teaches(t, c))〉

which asks for the professors which have a probability greater than 0.8 to give
a course in the ‘EE’ department and which for sure give a course in the ‘CS’
department.

Finally, the last theorem allows to evaluate queries such as 〈x̄/τ̄ , ȳf/Λ̄ |
F1(x̄, ȳf) ∧ F2(ȳ

f)〉 where F2 belongs to R. The easy proof of the theorem

36

is omitted.

Theorem 52 Let T be a probabilistic theory, let F1 and F2 be formulas such
that F1 instantiates every field variable from ȳf , F2 ∈ R, and where all the
field variables of ȳf may not appear in F2. Then

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf) ∧ F2(ȳ
f)} = σF2(ȳf)({x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)}).

Given the query

Q = 〈s/stud, p1/Λ, p2/Λ | w(takes(s, Algebra)) = p1 ∧
w(takes(s, Calculus)) = p2 ∧ p1 > 0.8〉,

the above theorem allows to compute ‖Q‖ as follows

‖Q‖ = σp1>0.8({s/stud, p1/Λ, p2/Λ | w(takes(s, Algebra)) = p1 ∧
w(takes(s, Calculus)) = p2}).

5.2.2 Disjunction

Consider a query Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉. As already pointed out, the
query formula F (x̄, ȳf) must be evaluable in order to obtain finitely many
answers. In the case that F is of the form F1(x̄, ȳf) ∨ F2(x̄, ȳf), then F is
evaluable if in particular both F1 and F2 instantiate every field variable yf

i .
The following theorem shows how to evaluate such queries.

Theorem 53 Given a probabilistic theory T , let F be a formula of the form
F1(x̄, ȳf) ∨ F2(x̄, ȳf), both F1 and F2 instantiate every field variable yf

i . Then

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf) ∨ F2(x̄, ȳf)} =

{x̄/τ̄ , ȳf/Λ̄ | F1(x̄, ȳf)} ∪ {x̄/τ̄ , ȳf/Λ̄ | F2(x̄, ȳf)}.

Proof. If F1 and F2 satisfy the conditions above, the proof follows from the
simple fact that for tuples c̄ of object constants and p̄ of field constants, T `
F1(c̄, p̄) ∨ F2(c̄, p̄) iff T ` F1(c̄, p̄) or T ` F2(c̄, p̄). 2

5.2.3 Object Quantifiers

The following theorem allows to remove universal quantifiers in queries. How-
ever, we need to make a minor restriction. Consider the query Q = 〈x/τ, yf/Λ |

37

(∀z/θ)(w(F (x, z)) = yf)〉. Recall that the query formula is an abbreviation of
(∀z)(θ(z) → w(F (x, z)) = yf) which is equivalent to (∀z)(¬θ(z)∨w(F (x, z)) =
yf). If θ’s extension axiom is (∀x)¬θ(x) then 〈c, p〉 ∈ ‖Q‖ for all c ∈ τ and
p ∈ Λ. Therefore we disallow universal quantification over empty simple types.

Theorem 54 Let T be a probabilistic theory and let F (x̄, ȳf , z) be a possibly
quantified formula with free variables among x̄, ȳf , and z. Suppose further that
θ is a simple type whose extension axiom in T is not (∀x)¬θ(x). Then

{x̄/τ̄ , ȳf/Λ̄ | (∀z/θ)F (x̄, ȳf , z)} =

{x̄/τ̄ , ȳf/Λ̄, z/θ | F (x̄, ȳf , z)} ÷ |θ | . (12)

Proof. Suppose that θ’s extension axiom in T is as follows:

(∀x)(θ(x) ↔ x = a1 ∨ . . . ∨ x = ar).

Let c̄ and p̄ be, respectively, tuples of object and field constants. Then

T ` (∀z)(θ(z) → F (c̄, p̄, z)) iff

T ` (∀z)((z = a1 ∨ . . . ∨ z = ar) → F (c̄, p̄, z)) iff

T ` (∀z)(z = ai → F (c̄, p̄, z)), for i = 1, . . . , r iff

T ` F (c̄, p̄, ai), for i = 1, . . . , r iff

T ` F (c̄, p̄, a) for every a ∈ |θ |.
Hence, a tuple (c̄, p̄) is an element of the left-hand side of (12) iff

T ` τ̄(c̄); (13)

T ` Λ̄(p̄); (14)

T ` pi 6= 0 for at least one i = 1, . . . , n; and (15)

T ` (∀z)(θ(z) → F (c̄, p̄, z)).

By the preamble of this proof, the last formula is equivalent to

T ` F (c̄, p̄, a) for every a ∈ |θ | . (16)

Since by Lemma 17, a ∈ |θ | iff T ` θ(a), formulas (13)– (16) are verified iff
for every a ∈ |θ |, (c̄, p̄, a) ∈ {x̄/τ̄ , ȳf/Λ̄, z/θ | F (x̄, ȳf , z)}, i.e., iff (c̄, p̄) is an
element of the right-hand side of (12). 2

The above theorem allows to evaluate queries such as

〈t/prof | (∀c/course)(w(teaches(t, c)) > w((∀s/stud)¬takes(s, c)))〉

38

which asks for the professors t such that for all courses c the probability that
t teaches c is greater than the probability that no student takes c.

The following theorem allows to remove existential quantifiers over object
variables.

Theorem 55 Let T be a probabilistic theory and let F (x̄, ȳf , z) be a possibly
quantified formula with free variables among x̄, ȳf , and z. Then

(1) If |θ | = {} then {x̄/τ̄ , ȳf/Λ̄ | (∃z/θ)F (x̄, ȳf , z)}t = {}.
(2) If |θ | 6= {} then

{x̄/τ̄ , ȳf/Λ̄ | (∃y/θ)F (x̄, ȳf , z)} = πx̄,ȳf{x̄/τ̄ , ȳf/Λ̄, z/θ | F (x̄, ȳf , z)}. (17)

Proof. Result (1) is trivial. For (2), suppose that θ’s extension axiom in T
is as follows:

(∀x)(θ(x) ↔ x = a1 ∨ . . . ∨ x = ar).

Let c̄ and p̄ be, respectively, tuples of object and field constants. Then

T ` (∃z)(θ(z) ∧ F (c̄, p̄, z)) iff

T ` (∃z)((z = a1 ∨ . . . ∨ z = ar) ∧ F (c̄, p̄, z)) iff

T ` (∃z)(
∨r

i=1z = ai ∧ F (c̄, p̄, z)) iff

T ` ∨r
i=1F (c̄, p̄, ai) iff

T ` F (c̄, p̄, a) for an a ∈ |θ |.

A tuple (c̄, p̄) is an element of the left-hand side of (17) iff

T ` τ̄(c̄); (18)

T ` Λ̄(p̄); (19)

T ` pi 6= 0 for at least one i = 1, . . . , n; and (20)

T ` (∃z)(θ(z) ∧ F (c̄, p̄, z))

By the preamble of this proof, the last formula is equivalent to

T ` F (c̄, a) for an a ∈ |θ |. (21)

Since, by Lemma 17, a ∈ |θ | iff T ` θ(a), formulas (18)– (21) hold iff for an
a ∈ |θ |, (c̄, p̄, a) ∈ {x̄/τ̄ , ȳf/Λ̄, z/θ | F (x̄, ȳf , z)}, i.e., iff (c̄, p̄) is an element
of the right-hand side of (17). 2

39

The above theorem allows to evaluate queries such as

〈t/prof | (∃c/course)w(¬teaches(t, c)) > 0.8)〉

which asks for the professors having a probability greater than 0.8 to do not
give a course.

5.2.4 Field quantifiers

In this section we study the evaluation of queries having quantifiers over field
variables. First of all notice that some of the existential field quantifiers (but
not all) can be removed. For example, the queries

Q1 = 〈x/τ | (∃yf/Λ)(w(F (x)) = yf)〉,
Q2 = 〈x/τ | (∃yf/Λ)(w(F (x)) = yf ∧ yf > c)〉, and
Q3 = 〈x/τ | (∃yf/Λ)(w(F1(x)) = yf ∧ w(F2(x)) θ yf)〉

are respectively equivalent to the queries Q′
1 = 〈x/τ | true〉, Q′

2 = 〈x/τ |
w(F (x)) > c〉 and Q′

3 = 〈x/τ | w(F1(x)) θ w(F2(x))〉. However, the quantifier
cannot be removed in

Q4 = 〈x/τ | (∃yf/Λ)(∀z/θ)(w(F1(x, z)) = yf → w(F2(x)) < yf)〉.

With respect to universal field quantifiers, all of them can be replaced by ex-
istential field quantifiers. For example, query Q = 〈x/τ | (∀yf/Λ)(w(F1(x)) =
yf → w(F2(x)) = yf)〉 is equivalent to Q = 〈x/τ | (∃yf/Λ)(w(F1(x)) =
yf ∧ w(F2(x)) = yf)〉 and finally is equivalent to Q′′ = 〈x/τ | w(F1(x)) =
w(F2(x))〉.

Without loss of generality, consider an evaluable query in CNF

Q ≡ 〈x̄/τ̄ , ȳf/Λ̄ | (∀zf/Λ)(%w̄/θ̄)(C1 ∧ . . . ∧ Cm)〉

where % denotes a sequence of (possible mixed) quantifiers ∃ and ∀. By defini-
tion of evaluable queries, zf occurs in a negative literal (other than zf 6= z′f)
in every Cj in which zf occurs. Therefore, every Cj in which zf occurs is of
the following form Cj ≡ w(Fj) = zf → Gj. Defining C ′

j ≡ Cj if zf does not
occur in Cj, and C ′

j ≡ w(Fj) = zf ∧Gj if zf occurs in Cj, then Q is equivalent
to the query

Q′ ≡ 〈x̄/τ̄ , ȳf/Λ̄ | (∃zf/Λ)(%w̄/θ̄)(C ′
1 ∧ . . . ∧ C ′

m)〉.

The next theorem states how to eliminate existential field quantifiers.

40

Theorem 56 Let T be a probabilistic theory and let F (x̄, ȳf , z) be a possibly
quantified formula with free variables among x̄, ȳf , and z. Then

{x̄/τ̄ , ȳf/Λ̄ | (∃zf/Λ)F (x̄, ȳf , zf)} =

πx̄,ȳf{x̄/τ̄ , ȳf/Λ̄, zf/Λ | F (x̄, ȳf , zf)}.

Proof. Similar to the proof of Theorem 55. 2

The above theorem allows to evaluate queries such as

〈t/prof, c/course | (∃p/Λ)(w(¬teaches(t, c)) = p ∧
(∀s/stud)w(takes(s, c)) > p)〉

which asks for the couples 〈t, c〉 such that if the probability that professor t
does not teach course c is p then, for each student s, the probability that s
takes course c is greater than p.

Finally, the last theorem allows to eliminate query variables that do not appear
in the query formula. The easy proof is left to the reader.

Theorem 57 Let T be a probabilistic theory, let x̄/φ̄ = 〈x1/φ1, . . . , xn/φn〉
be a tuple of object and field variables, and let F (x̄) be a formula in which the
object variable y is not free. Then

(1) {y/θ, x̄/φ̄, | F (x̄)} = |θ | × {x̄/φ̄ | F (x̄)}.
(2) If for k ≥ 0, z̄/ψ̄ = 〈z1/ψ1, . . . , zk/ψk〉 then

{x̄/φ̄, y/θ, z̄/ψ̄ | F (x̄, z̄))} =

π2,...,n+1,1,n+2,...,n+k+1(|θ | × {x̄/φ̄, z̄/ψ̄ | F (x̄, z̄)}).

6 Related work

The need for uncertainty management in database and knowledge-base sys-
tems has motivated much of the work on the logical foundations of reason-
ing with uncertain knowledge. In this context, probability theory is the most
widely accepted formalism for reasoning about change and uncertainty. We
review in this section related approaches concerning probabilistic extensions
of (deductive) databases and logic programming.

We described in this paper an extension of the relational model allowing to
capture a particular type of probabilistic information. In order to formalize

41

probabilistic relational databases and to study query evalation, we needed a
logic for reasoning about probability. Although there is a wealth of literature
available on probabilistic logic (see for example the references in [5]), the
foundations of our work was given by Halpern, which studied in [9] several
first-order logics of probabilities. He considered two approaches to giving se-
mantics to such logics. The first approach puts a probability on the domain,
and is appropriate for giving semantics to formulas involving statistical in-
formation such as “the probability that a randomly chosen student lives in
Brussels is greater than 0.9”. The second approach puts a probability on pos-
sible worlds and is appropriate for giving semantics to formulas describing
degrees of belief such as “the probability that Peter (a particular student)
lives in Brussels is greater than 0.9”. It is this logic that we used for formaliz-
ing probabilistic relational databases. In addition, Halpern showed that both
approaches can be easily combined, allowing to reason about statistical infor-
mation and degrees of belief. Halpern also gave axiom systems that are sound
and complete in cases where a complete axiomatization is possible.

In the context of logic programming, the introduction of probability has been
studied by Ng and Subrahmanian in [23–25] . They defined a logical frame-
work where conjunctions and disjunctions are annotated with closed intervals
of truth values [ρ1, ρ2] where ρi may contain constants, variables or interpreted
functions. They developed fixpoint and model-theoretic semantics and pro-
vided a sound and (weakly) complete proof procedure. As explained in the next
section, several of their results can be used when extending our framework.
Notice that we allow general queries of the form Q = 〈x̄/τ̄ , ȳf/Λ̄ | F (x̄, ȳf)〉
for any well-formed formula F , in particular allowing negation and univer-
sal quantification over both field and object variables. In [23–25] universal
quantifiers are not allowed in queries.

In [8,13] , Kießling et. al. studied the problem of reasoning in the presence
of incomplete information and proposed a sound (propositional) probabilistic
calculus based on conditional probabilities. However, this approach is less
general than the work of Ng and Subrahmanian.

One criticism leveled against probabilistic approaches for uncertainty manage-
ment is how the probabilities representing degree of likelihood can be derived.
Lakshmanan in [15] observed that beliefs (and doubts) are formed by agents
using underlying scenarios in the context of which the facts or rules are be-
lieved (or doubted). Thus, he proposed a framework in which the facts and
rules of a knowledge-base are associated with propositional formulas repre-
senting the scenarios where a fact/rule is believed and doubted. Computation
of probabilities is accomplished by compiling the belief and doubt information
into a linear program deriving bounds on belief and doubt probabilities. This
technique is related to our evaluation of t-relations and can be used in our
approach if we drop the independence assumptions in probabilistic theories.

42

Also, Lakshmanan and Sadri proposed an approach to probabilistic deductive
databases [17] based on a tri-lattice of probabilistic truth values. Using their
framework, it is possible to reason with facts and rules having associated
ranges of probabilities indicating belief and doubt.

In a conceptually different approach, Sadri [34] studies how to calculate relia-
bility of answers to a query in a relational database where information comes
from sources of different reliabilities. That approach allows for the represen-
tation of the contributing sources of each piece of information in a database
by associating to each tuple a vector of length k with -1, 0 and 1 entries,
where k is the number of information sources. To a k-vector corresponds a
propositional expression specifying the condition under which the tuple ex-
ists in terms of the propositional variables representing information sources.
Thus, these extended relations are similar to our t-relations, and indeed the
extended algebraic operators defined in [34] are similar to ours, except for
division operator which is not defined there. That framework was extended
to deductive databases in [16] . Both works make the assumption of indepen-
dence between information contributed by different sources. Similarly, we have
assumed independence of events in our framework.

7 Summary and conclusions

Information of a stochastic nature is very common in real-life situations. We
have shown that two different types of probabilistic information can be intro-
duced into a relational database. We have then focused on manipulating one
of these types and defined probabilistic relations.

Probabilistic databases are formalized using a probabilistic logic language pro-
posed by Halpern. That logic is a suitable formalism for representing proba-
bilistic information, as well as for precisely stating the semantics assigned to
probabilistic databases. We represented probabilistic databases by means of
probabilistic theories and studied query evaluation.

We distinguished two types of queries: first-order and probabilistic queries. For
the evaluation of the former, we introduced a special type of relations, called
trace relations or t-relations, allowing to manipulate probabilistic information
by keeping track of the origin of tuples. We also generalized the relational
operators for t-relations.

As we have shown, the evaluation of first-order queries can be obtained by
manipulating t-relations. In this way, given a first-order query Q, we evaluate
an associated t-query Qt which gives a t-relation as result. The answer to the
original query is then obtained with a mapping EVAL which, based on the

43

assertions of the probabilistic theory, evaluates the t-relation ‖Qt ‖ and gives
as result a probabilistic relation ‖Q‖. Finally, we studied the evaluation of
probabilistic queries. The evaluation of such a query Q is obtained by applying
the classical relational operators to the subqueries composing Q.

Our work can be extended in two directions. The first allows the probability
of events to be closed intervals. We can use the results of [23] , in particular
the two operators ⊗ and ⊕ for combining intervals.

The probabilistic theories studied in this paper contain a set of axioms stating
that all the events represented in the database are independent. The second
extension relaxes this restriction in order to accomodate real-life situations.
This amounts to allow the indepence axioms in probabilistic theories to be ar-
bitrary field formulas. Several results developed in the related works reviewed
in Section 6 can be used for query evaluation in probabilistic theories having
arbitrary field formulas. Notice that t-relations are extremely important in
this context because, as stated in [33] , they allow to defer the evaluation of
probabilities to the last stage where all the relational operators have already
been computed. Thus, for the evaluation of queries when general independence
axioms are allowed, it suffices to generalize the EVAL mapping by capturing
the constraints on the probabilities in the form of a linear program as done in
[15] .

Introducing probabilistic information into existing relational database man-
agement systems requires to be able to manipulate t-relations. Since t-relations
are classical relations extended with an additional column containing propo-
sitional formulas, the relational database management systems have to be
extended with a component for manipulating propositional formulas. Since
the manipulation of propositional formulas is a well-studied problem (e.g. in
the theory of switching circuits), this component is easy to realize.

Acknowledgements

I woulk like to thank professor Alain Pirotte, my thesis advisor, for his many helpful
comments and suggestions. Many thanks also to professor Philippe Smets for helpful
discussions. Finally, I am grateful to the referees whose careful reading helped to
considerably improve this paper.

References

[1] D. Barbará, H. Garćıa-Molina, and D. Porter. A probabilistic relational data
model. In F. Bancilhon, C. Thanos, and D. Tsichritzis, editors, Proc. of the Int.

44

Conf. on Extending Database Technology, EDBT’90 , LNCS 416, pages 60–74,
Venice, Italy, 1990. Springer-Verlag.

[2] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proc.
13th Int. Conf. on Very Large Databases, Brighton, U.K., 1987.

[3] E. Codd. Extending the database relational model to capture more meaning.
ACM Trans. on Database Systems, 4(4):397–434, Dec. 1979.

[4] R. Elmasri and S. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings, 2 edition, 1994.

[5] R. Fagin, J. Halpern, and N. Meggido. A logic for reasoning about probabilities.
Information and Computation, 87:78–128, 1990.

[6] E. Gelenbe and G. Hebrail. A probability model of uncertainty in databases. In
Proc. of the Int. Conf. on Data Engineering, 1986.

[7] G. Grahne. The Problem of Incomplete Information in Relational Databases.
LNCS 554. Springer-Verlag, 1991.

[8] U. Güntzer, W. Kießling, and H. Thöne. New directions for uncertainty
reasoning in deductive databases. In Proc. ACM-SIGMOD Int. Conf. on
Management of Data, pages 178–187, Denver, 1991.

[9] J. Halpern. An analysis of first–order logics of probability. Artificial Intelligence,
46(3):311–350, June 1990.

[10] G. Hulin, A. Pirotte, D. Roelants, and M. Vauclair. Logic and databases. In
A. Thayse, editor, From Modal Logic to Deductive Databases, pages 279–350.
Wiley, 1989.

[11] T. Imieliński and W. Lipski, Jr. Incomplete information in relational databases.
Journal of the ACM , 31(4):761–791, Oct. 1984.

[12] T. Imielinski and K. Vadaparty. Complexity of query processing in databases
with or-objects. In Proc. 8th ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, 1989.

[13] W. Kießling, H. Thöne, and U. Güntzer. Database support for problematic
knowledge. In A. Pirotte, C. Delobel, and G. Gottlob, editors, Proc. of the Int.
Conf. on Extending Database Technology, EDBT’92 , Vienna, Austria, 1992.
Springer-Verlag.

[14] M. Lacroix and A. Pirotte. Generalized joins. ACM SIGMOD Record , 8(3),
Sept. 1976.

[15] V. Lakshmanan. An epistemic foundation for logic programming with
uncertainty. In Proc. of the Int. Conf. on Foundations of Software Technology
and Theoretical Computer Science, LNCS 880, pages 197–207, Madras, India,
Dec. 1994. Springer-Verlag.

45

[16] V. Lakshmanan and F. Sadri. Modeling uncertainty in deductive databases.
In Proc. of the Int. Conf. on Database Expert Systems and Applications,
DEXA’94 , LNCS 856, pages 197–207, Athens, Greece, Sept. 1994. Springer-
Verlag.

[17] V. Lakshmanan and F. Sadri. Probabilistic deductive databases. In Proc. of the
Int. Logic Programming Symposium, pages 197–207, Ithaca, NY, Nov. 1994.
MIT Press.

[18] K. Liu and R. Sunderraman. Indefinite and maybe information in relational
databases. ACM Trans. on Database Systems, 15(1):1–39, Mar. 1990.

[19] K. Liu and R. Sunderraman. A generalized relational model for indefinite and
maybe information. IEEE Trans. on Knowledge and Data Engineering, 3(1):65–
77, Mar. 1991.

[20] R. Miller. Switching Theory , volume 1: Combinatorial Circuits. John Wiley &
Sons, Inc., 1965.

[21] J. Minker. On indefinite databases and the closed world assumption. In D. W.
Loveland, editor, Proceedings of the 6th Conference on Automated Deduction,
LNCS 138, pages 292–308, New York, USA, June 1982. Springer-Verlag.

[22] J. Minker. Toward a foundation of disjunctive logic programming. In
E. Lusk and R. Overbeek, editors, Proceedings of the North American Logic
Programming Conference, pages 1215–1235. MIT Press, 1989.

[23] R. Ng and V. Subrahmanian. Probabilistic logic programming. Information and
Computation, 101(2):150–201, 1992.

[24] R. Ng and V. Subrahmanian. A semantical framework for supporting subjective
and conditional probabilities in deductive databases. Journal of Automated
Reasoning , 10(2):191–235, 1993.

[25] R. Ng and V. Subrahmanian. Stable semantics for probabilistic databases.
Information and Computation, 110(1):42–83, 1994.

[26] M. Pittarelli. An algebra for probabilistic databases. IEEE Trans. on Knowledge
and Data Engineering , 6(2):293–303, 1994.

[27] A. Rajasekar, J. Lobo, and J. Minker. Weak generalized closed world
assumption. Journal of Automated Reasoning, 5(3):293–307, 1989.

[28] K. Raju and A. K. Majumdar. Fuzzy functional dependencies and lossless join
decomposition of fuzzy relational database systems. ACM Trans. on Database
Systems, 13(2):129–166, 1988.

[29] R. Reiter. Towards a logical reconstruction of relational database theory. In
M. Brodie, J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling ,
pages 191–238. Springer-Verlag, Berlin, 1984.

[30] R. Reiter. A sound and sometimes complete query evaluation algorithm for
relational databases with null values. Journal of the ACM , 33(2):349–370, Apr.
1986.

46

[31] R. Reiter and J. de Kleer. Foundations of assumption-based truth maintenance
system: Preliminary report. In Proc. of the AAAI-87 , pages 183–188, 1987.

[32] K. Ross and R. Topor. Inferring negative information from disjunctive
databases. Journal of Automated Reasoning, 4:397–424, 1988.

[33] F. Sadri. Modeling uncertainty in databases. In Proc. of the 7th IEEE Int. Conf.
on Data Engineering , pages 122–131, 1991.

[34] F. Sadri. Reliability of answers to queries in relational databases. IEEE Trans.
on Knowledge and Data Engineering, 3(2):245–251, 1991.

[35] J. Shoenfield. Mathematical Logic. Addison-Wesley, Massachusetts, 1967.

[36] L. Sombe. Reasoning under Uncertain Information in Artificial Intelligence.
Wiley, 1990.

[37] A. Van Gelder and R. Topor. Safety and translation of relational calculus
queries. ACM Trans. on Database Systems, 16(2):235–278, 1991.

[38] L. Yuan and D.-A. Chiang. A sound and complete query evaluation algorithm
for relational databases with null values. In Proc. ACM-SIGMOD Int. Conf. on
Management of Data, pages 74–81, Chicago, June 1988.

[39] L. Zadeh. Fuzzy sets. Information and Control , 8:338–353, 1965.

[40] L. Zadeh. Fuzzy sets as a basis for theory of possibility. Fuzzy Sets Systems,
1(1):3–28, 1978.

[41] L. Zadeh. A thery of approximate reasoning. In J. H. et al., editor, Machine
Intelligence 9 , pages 149–194. Ellis Hoorwood Ltd., Sussex, UK, 1985.

[42] E. Zimányi. Incomplete and Uncertain Information in Relational Databases.
PhD thesis, Université Libre de Bruxelles, Belgium, July 1992.

[43] E. Zimányi and A. Pirotte. Imperfect knowledge in databases. In A. Motro
and P. Smets, editors, Uncertainty Management in Information Systems: from
Needs to Solutions. Kluwer, 1996. In press. Long version in Research Report
RR 92-36, Unité d’Informatique, Faculté des Sciences Appliquées, UCL.

47

