
Temporal Aggregates and Temporal Universal
Quantification in Standard SQL

Esteban Zimányi
Dept. of Computer & Network Engineering
Université Libre de Bruxelles, CP 165/15

50 Av. F. Roosevelt, 1050 Bruxelles, Belgique

ezimanyi@ulb.ac.be

ABSTRACT
Although it has been acknowledged for many years that
querying and updating time-varying information using stan-
dard (i.e., non-temporal) SQL is a challenging task, the pro-
posed temporal extensions of SQL have not reach accep-
tance in the standardization committees. Therefore, nowa-
days database practitioners must still use standard SQL for
manipulating time-varying information. This paper shows
how to realize temporal aggregates and temporal universal
quantifiers using standard SQL.

Keywords: Temporal databases, temporal aggregates,
temporal universal quantifiers, SQL.

1. INTRODUCTION
Many applications need to keep the evolution of data that

varies on time. For example, in order to conform with le-
gal regulations and corporate policies, administrative data-
bases must keep the evolution of many attributes of their
employees, such as marital status, salary, affiliation, etc.
Current Database Management Systems, and SQL in par-
ticular, provide little support for dealing with time-varying
data: They only provide standard data types for encoding
dates or timestamps. However, querying and updating time-
varying data using standard SQL is a challenging task.

For this reason, in the last decades many research was de-
voted to the management of the temporal dimension in data-
bases, resulting in the development of temporal databases.
In particular, a temporal extension of SQL-92 called TSQL2
[7] was proposed to international standardization commit-
tees [9, 10] leading to a dedicated chapter of the SQL:1999
standard called “Part 7, SQL/Temporal”. However, such
an extension has not yet passed the standardization process
[11, 2]. Another approach for coping with the temporal di-
mension in relational databases was proposed in [3].

The consequence of this state of affairs is that nowadays
database practitioners are left with standard SQL for manip-
ulating time-varying data. In [8] is presented how to manip-
ulate temporal data with standard SQL, discussing in which
situations and under which assumptions the corresponding
SQL code can be applied. In particular, it is presented how
to define temporal join, temporal projection, or temporal
difference in SQL. However, at the best of our knowledge,
there has not been studies showing how to deal with tempo-
ral aggregates as well as temporal universal quantification
using standard SQL. This paper is devoted to this issue.

The paper is structured as follows. Section 2, inspired
from [8], introduces temporal databases and shows how to

realize temporal join and temporal projection in standard
SQL. The section provides the necessary background for the
rest of the paper. Sections 3 and 4, describing our contribu-
tions, are devoted to temporal aggregates and temporal uni-
versal quantification. Finally, in the conclusion we describe
experimental results and comparison with related works.

2. TEMPORAL DATABASES

Employee

SSN FirstName LastName BirthDate Address

Affiliation

SSN DNumber FromDate ToDate

Controls

PNumber DNumber FromDate ToDate

Salary

SSN Amount FromDate ToDate

WorksOn

SSN PNumber FromDate ToDate

Figure 1: Example of a temporal database schema.

Figure 1 shows an example of a temporal database schema.
Table Employee is non-temporal, while all other tables are
temporal, and more precisely, they are valid-time tables:
The columns FromDate and ToDate indicate when the infor-
mation in the corresponding row is valid, e.g., the period of
time during which an employee is affiliated to a department.
As a data type for representing periods is not available in
SQL, a period is encoded in two columns of type Date. The
problem is that these peculiar columns (i.e., having such a
particular semantics) are encoded in SQL in the same way
as columns such as BirthDate which is also of type Date but
does not have any specific semantics.

SSN DNumber FromDate ToDate

123456789 D1 2002-01-01 2003-06-01

123456789 D1 2003-06-01 2003-08-01

123456789 D1 2003-08-01 3000-01-01

333444555 D2 2003-10-01 2004-01-01

333444555 D2 2004-01-01 3000-01-01

Figure 2: An example of temporal table.

Figure 2 shows an example of table Affiliation. A
closed-open representation for periods is used, e.g., the va-

lidity of the first row is [2002-01-01, 2003-06-01). Also,
a special date ’3000-01-01’ denotes currently-valid rows.

2.1 Temporal Join
The join operator is used to combine information scattered

in different tables. If the tables to be combined are tempo-
ral, then a temporal join is needed. Expressing a temporal
join in SQL requires four select statements and complex in-
equality predicates verifying that the validity periods of the
rows to be combined intersect.

Recall from Figure 1 that tables Salary and Affiliation

keep, respectively, the evolution of the salary and the evo-
lution of the affiliation of employees. To determine the joint
evolution of salary and affiliation a temporal join of these
tables is needed. This can be done in SQL as follows.

SELECT S.SSN,Amount,DNumber,S.FromDate,S.ToDate

FROM Salary S, Affiliation A WHERE S.SSN=A.SSN

AND A.FromDate<S.FromDate AND S.ToDate<=A.ToDate

UNION ALL

SELECT S.SSN,Amount,DNumber,S.FromDate,A.ToDate

FROM Salary S, Affiliation A

WHERE S.SSN=A.SSN AND S.FromDate>=A.FromDate

AND S.FromDate<A.ToDate AND A.ToDate<S.ToDate

UNION ALL

SELECT S.SSN,Amount,DNumber,A.FromDate,S.ToDate

FROM Salary S, Affiliation A

WHERE S.SSN=A.SSN AND A.FromDate>=S.FromDate

AND A.FromDate<S.ToDate AND S.ToDate<A.ToDate

UNION ALL

SELECT S.SSN,Amount,DNumber,A.FromDate,A.ToDate

FROM Salary S, Affiliation A WHERE S.SSN=A.SSN

AND A.FromDate>S.FromDate AND A.ToDate<S.ToDate

In the above query it is supposed that there are no dupli-
cate rows in the tables: at each point in time an employee
has one salary and one affiliation. The UNION ALL is used
since the query does not generate duplicates and this is more
efficient than using UNION.

Temporal join can be written in a single statement using
either a CASE statement or using functions. Suppose that
two functions minDate and maxDate are defined as follows.

CREATE FUNCTION minDate(one DATE,two DATE)

RETURNS DATE BEGIN

RETURN CASE WHEN one<two THEN one ELSE two END

END

CREATE FUNCTION maxDate(one DATE,two DATE)

RETURNS DATE BEGIN

RETURN CASE WHEN one>two THEN one ELSE two END

END

Thus, minDate and maxDate return, respectively, the mini-
mum and the maximum of the two arguments. Using the
above functions the temporal join can be defined as follows.

SELECT S.SSN,Amount,DNumber,

maxDate(S.FromDate,A.FromDate) AS FromDate,

minDate(S.ToDate,A.ToDate) AS ToDate

FROM Salary S, Affiliation A WHERE S.SSN=A.SSN

AND maxDate(S.FromDate,A.FromDate) <

minDate(S.ToDate,A.ToDate)

The two functions are used in the SELECT clause for con-
structing the intersection of the corresponding validity peri-
ods. The condition in the WHERE clause ensures that the two
validity periods overlap.

2.2 Temporal Projection

SSN FromDate ToDate

123456789 2002-01-01 2003-06-01

123456789 2003-06-01 2003-08-01

123456789 2003-08-01 3000-01-01

333444555 2003-10-01 2004-01-01

333444555 2004-01-01 3000-01-01

Figure 3: Projecting DNumber from Figure 2.

Given the table Affiliation of Figure 2, suppose that we
want to obtain the periods of time in which an employee has
worked in the company, independently of the department.
Figure 3 shows the result of projecting out attribute DNumber
from the table of Figure 2. As can be seen the resulting table
is redundant. The first three rows are value equivalent (i.e.,
they equal on all their columns but FromDate and ToDate)
and the validity periods of these rows meet. The situation
is similar for the last two rows. Therefore, the result of the
projection should be as given in Figure 4. This process of
combining several value-equivalent rows into one provided
that their validity periods overlap is called coalescing.

SSN FromDate ToDate

123456789 2002-01-01 3000-01-01

333444555 2003-10-01 3000-01-01

Figure 4: Coalescing the temporal table of Figure 3.

Coalescing is a complex and costly operation in SQL. It
can be realized entirely in SQL as follows [1].

SELECT DISTINCT F.SSN,F.DNumber,F.FromDate,L.ToDate

FROM Affiliation F, Affiliation L

WHERE F.FromDate<L.ToDate

AND F.SSN=L.SSN AND F.DNumber=L.DNumber

AND NOT EXISTS (SELECT * FROM Affiliation M

WHERE M.SSN=F.SSN AND M.DNumber=F.DNumber

AND F.FromDate<M.FromDate AND M.FromDate<=L.ToDate

AND NOT EXISTS (SELECT * FROM Affiliation M1

WHERE M1.SSN=F.SSN AND M1.DNumber=F.DNumber

AND M1.FromDate<M.FromDate

AND M.FromDate<=M1.ToDate))

AND NOT EXISTS (SELECT * FROM Affiliation M2

WHERE M2.SSN=F.SSN AND M2.DNumber=F.DNumber

AND ((M2.FromDate<F.FromDate AND

F.FromDate<=M2.ToDate)

OR (M2.FromDate<=L.ToDate AND

L.ToDate<M2.ToDate)))

F L

M1

M

Figure 5: Coalescing value-equivalent rows.

Consider the diagram in Figure 5. Coalescing amounts
to select the from and to dates of two value-equivalent rows
F(irst) and L(ast) having no gap between these dates, i.e.,
for every value-equivalent row M whose validity period is be-
tween those of F and L there is another value-equivalent row

M1 whose validity period overlaps the beginning of M. The
second NOT EXIST ensures that no other value-equivalent
row M2 overlaps the period between the selected from and
to dates and has an earlier from date or a later to date.

3. TEMPORAL AGGREGATION
SQL provides aggregation functions such as COUNT, MIN,

MAX, and AVG. They are used for answering queries such as
“List the maximum salary” or “Count the number of em-
ployees”. If table Salary were non-temporal these queries
can be written as follows.

SELECT MAX(Amount) SELECT COUNT(*)

FROM Salary FROM Salary

Another usual request is to combine rows according to
a criterion specified in a GROUP BY clause previous to the
application of the aggregation operator, as in the query “List
the maximum salary by department”. The non-temporal
version of this query can be written in SQL as follows.

SELECT DNumber,MAX(Amount)

FROM Affiliation A, Salary S

WHERE A.SSN=S.SSN GROUP BY DNumber

The temporal version of the above queries require a three-
step process: (i) identify the periods of time in which all
values are constant, (ii) compute the aggregation over these
periods, and finally (iii) coalesce the result.

For the first two queries, Figure 6 shows a diagram where
table Salary has three employees E1, E2, and E3, as well as
the temporal maximum and temporal count. Notice that
the period in which no employee works in the company does
not belong to the answer for the temporal maximum, but it
appears for the temporal count with a value of 0.

E1
20 30

E2
25 30

E3
30 35 35

MAX
20 25 30 30 35 35 35 30

COUNT
1 2 3 3 3 2 0 2 1

Figure 6: Evolution of the maximum salary and the
number of employees.

The first step computes the periods on which the aggre-
gation must be calculated, as follows.

CREATE VIEW SalChanges(Day) as

SELECT DISTINCT FromDate FROM Salary

UNION SELECT DISTINCT ToDate FROM Salary

CREATE VIEW SalPeriods(FromDate,ToDate) as

SELECT P1.Day,P2.Day

FROM SalChanges P1, SalChanges P2

WHERE P1.Day<P2.Day AND NOT EXISTS (

SELECT * FROM SalChanges P3

WHERE P1.Day<P3.Day AND P3.Day<P2.Day)

View SalChanges gathers the days in which a salary change
occurred, while view SalPeriods constructs the periods from
such days.

The second step computes the aggregation on these peri-
ods. For the maximum salary this is done as shown below.

CREATE VIEW TempMax(MaxSalary,FromDate,ToDate) as

SELECT MAX(Amount),P.FromDate,P.ToDate

FROM Salary S, SalPeriods P

WHERE S.FromDate<=P.FromDate

AND P.ToDate<=S.ToDate

GROUP BY P.FromDate, P.ToDate

Computing the number of employees is done as follows.

CREATE VIEW TempCount(NbEmp,FromDate,ToDate) as

SELECT COUNT(*),P.FromDate,P.ToDate

FROM Salary S, SalPeriods P

WHERE S.FromDate<=P.FromDate

AND P.ToDate<=S.ToDate

GROUP BY P.FromDate, P.ToDate

UNION ALL

SELECT 0,P.FromDate,P.ToDate FROM SalPeriods P

WHERE NOT EXISTS (SELECT * FROM Salary S

WHERE S.FromDate<=P.FromDate

AND P.ToDate<=S.ToDate)

Notice the second select that assigns a count value of 0 to
those periods that do not appear in the first select.

Finally, in the third step it is necessary to coalesce the
above views. This can be done as seen in Section 2.2.

E1 20 30

D1 D2

E2 25 30

D2 D1 D2

E3 30 35 35

D2 D1 D2

MAX(D1)
20 25 35 35

MAX(D2)
25 30 30 30 35 30

Figure 7: Maximum salary by department.

Now consider the second query asking the maximum salary
by department. Figure 7 shows a diagram of possible val-
ues of tables Affiliation and Salary for employees E1, E2,
and E3, and departments D1, and D2. If it is supposed that
employees have salary only while they are affiliated to a de-
partment, the query can be written as follows.

In the first step it is necessary to compute by department
the periods on which a maximum must be calculated.

CREATE VIEW Aff_Sal(DNumber,Amount,

FromDate,ToDate) as

SELECT DISTINCT A.DNumber,S.Amount,

maxDate(S.FromDate,A.FromDate),

minDate(S.ToDate,A.ToDate)

FROM Affiliation A, Salary S WHERE A.SSN=S.SSN

AND maxDate(S.FromDate,A.FromDate) <

minDate(S.ToDate,A.ToDate)

CREATE VIEW SalChangesDep(DNumber,Day) as

SELECT DISTINCT DNumber,FromDate FROM Aff_Sal

UNION SELECT DISTINCT DNumber,ToDate FROM Aff_Sal

CREATE VIEW SalPeriodsDep(DNumber,FromDate,ToDate) as

SELECT P1.DNumber,P1.Day,P2.Day

FROM SalChangesDep P1, SalChangesDep P2

WHERE P1.DNumber=P2.DNumber AND P1.Day<P2.Day

AND NOT EXISTS (SELECT * FROM SalChangesDep P3

WHERE P1.DNumber=P3.DNumber AND P1.Day<P3.Day

AND P3.Day<P2.Day)

View Aff_Sal realizes a temporal join of Affiliation and
Salary. This yields the days in which a change of maximum
salary of a department may occur. Next, view SalChanges

collects such days by department, and finally view SalPeriods

constructs the periods from these days.
The second step computes the maximum salary for the

above periods.

CREATE VIEW TempMaxDep(DNumber,MaxSalary,

FromDate,ToDate) as

SELECT P.DNumber,MAX(Amount),P.FromDate,P.ToDate

FROM Aff_Sal A, SalPeriodsDep P

WHERE A.DNumber=P.DNumber

AND A.FromDate<=P.FromDate AND P.ToDate<=A.ToDate

GROUP BY P.DNumber, P.FromDate, P.ToDate

Finally, in the third step the above view is coalesced.

4. TEMPORAL UNIVERSAL QUANTIFIER
The universal quantifier is needed in many usual queries,

such as “List the employees that work in all projects con-
trolled by the department to which they are affiliated”. As
SQL does not provide the universal quantifier, the non-
temporal version of the above query is written with two
nested NOT EXISTS as follows.

SELECT SSN FROM Affiliation A WHERE NOT EXISTS (

SELECT * FROM Controls C WHERE A.DNumber=C.DNumber

AND NOT EXISTS (SELECT * FROM WorksOn W

WHERE C.PNumber=W.PNumber AND A.SSN=W.SSN))

Consider now the temporal version of the above query. As
was the case for temporal aggregation, a three-step process is
needed as follows: (i) identify the periods of time in which all
values are constant, (ii) compute the universal quantification
over these periods, and finally (iii) coalesce the result.

Four cases arise depending on whether the tables WorksOn,
Affiliation, and Controls are temporal or not.

Case 1.Only WorksOn is temporal.

W1
E,P1

W2
E,P2

Result
✕ ✓✓ ✕

Affiliation(E,D)

Controls(D,P1)

Controls(D,P2)

The above diagram shows possible values in the three ta-
bles and the result of the query. In the diagram W1 and
W2 represent two rows of WorksOn relating employee E with
projects P1 and P2. At the right of the diagram it is shown
that employee E works in department D which controls both
projects. Finally, Result shows the periods for which the
universal quantification must be calculated, and whether the
answer for the period is positive or negative.

In this case the query can be written in two steps. The
first step is shown next.

CREATE VIEW TempUnivC1(SSN,FromDate,ToDate) as

SELECT DISTINCT W1.SSN,W1.FromDate,W2.ToDate

FROM WorksOn W1, WorksOn W2, Affiliation A

WHERE W1.SSN=W2.SSN AND W1.SSN=A.SSN

AND W1.FromDate<W2.ToDate

AND NOT EXISTS (SELECT * FROM Controls C

WHERE A.DNumber=C.DNumber

AND NOT EXISTS (SELECT * FROM WorksOn W

WHERE C.PNumber=W.PNumber AND A.SSN=W.SSN

AND W.FromDate<=W1.FromDate

AND W2.ToDate<=W.ToDate))

The above view looks for two rows (possibly the same) in
WorksOn from which the period in the result can be con-
structed, as well as a row in Affiliation determining the
department to which that employee is affiliated. The two
inner NOT EXISTS ensure that there is no project controlled
by that department in which the employee does not work.

In the second step, the above view must be coalesced.

Case 2.Only Controls and WorksOn are temporal.

C1
D,P1

C2
D,P2

W1
E,P1

W2
E,P2

Result
✓ ✓ ✕ ✓ ✓ ✕

Affiliation(E,D)

The above diagram shows possible values in the three ta-
bles and the result of the query. In the diagram C1 and C2

represent two rows of Controls relating department D with
projects P1 and P2, while W1 and W2 represent two rows of
WorksOn relating employee E with projects P1 and P2. At
the right of the diagram it is shown that employee E is af-
filiated to department D. Finally, Result shows the periods
for which the universal quantification must be calculated.
Notice that employees may work in projects controlled by
departments different to the one to which they are affiliated.

The first step constructs the periods on which the univer-
sal quantifier must be computed.

CREATE VIEW ProjChangesC2(SSN,Day) as

SELECT DISTINCT SSN,FromDate

FROM Affiliation A, Controls C

WHERE A.DNumber=C.DNumber UNION

SELECT DISTINCT SSN,ToDate

FROM Affiliation A, Controls C

WHERE A.DNumber=C.DNumber UNION

SELECT DISTINCT SSN,FromDate FROM WorksOn UNION

SELECT SSN,ToDate FROM WorksOn

CREATE VIEW ProjPeriodsC2(SSN,FromDate,ToDate) as

SELECT P1.SSN,P1.Day,P2.Day

FROM ProjChangesC2 P1, ProjChangesC2 P2

WHERE P1.SSN=P2.SSN AND P1.Day<P2.Day

AND NOT EXISTS (SELECT * FROM ProjChangesC2 P3

WHERE P1.SSN=P3.SSN AND P1.Day<P3.Day

AND P3.Day<P2.Day)

View ProjChangesC2 extracts for each employe the days
in which his/her department starts or finishes to control a
project, as well as days in which he/she starts or finishes
to work in a project. View ProjPeriodsC2 constructs the
periods from the above days.

The second step computes the universal quantifier on these
periods.

CREATE VIEW TempUnivC2(SSN,FromDate,ToDate) as

SELECT DISTINCT P.SSN,P.FromDate,P.ToDate

FROM ProjPeriodsC2 P, Affiliation A

WHERE P.SSN=A.SSN AND NOT EXISTS (

SELECT * FROM Controls C WHERE A.DNumber=C.DNumber

AND C.FromDate<=P.FromDate AND P.ToDate<=C.ToDate

AND NOT EXISTS (SELECT * FROM WorksOn W

WHERE C.PNumber=W.PNumber AND P.SSN=W.SSN

AND W.FromDate<=P.FromDate

AND P.ToDate<=W.ToDate))

Finally, the third step is to coalesce the above view.

Case 3.Only Affiliation and WorksOn are temporal.

A
E,D

W1
E,P1

W2
E,P2

Result
✕ ✕ ✓ ✕

Controls(D,P1)

Controls(D,P2)

The above diagram shows possible values in the tables and
the result of the query. In the diagram W1 and W2 represent
two rows of WorksOn relating employee E with projects P1

and P2, while A represents a row of Affiliation relating
employee E with department D. The right of the diagram
shows that department D controls both projects P1 and P2.
Finally, Result shows the periods for which the universal
quantification must be calculated. As shown in the diagram,
no hypothesis is made about the projects in which employees
work, i.e., employees may work in projects controlled by
departments different to the one to which they are affiliated.

For this query, the first step constructs the periods on
which the universal quantifier must be computed.

CREATE VIEW Aff_WO(SSN,DNumber,FromDate,ToDate) as

SELECT DISTINCT A.SSN,A.DNumber,

maxDate(A.FromDate,W.FromDate),

minDate(A.ToDate,W.ToDate)

FROM Affiliation A, WorksOn W WHERE A.SSN=W.SSN

AND maxDate(A.FromDate,W.FromDate) <

minDate(A.ToDate,W.ToDate)

CREATE VIEW ProjChangesC3(SSN,DNumber,Day) as

SELECT DISTINCT SSN,DNumber,FromDate

FROM Aff_WO UNION

SELECT DISTINCT SSN,DNumber,ToDate

FROM Aff_WO UNION

SELECT SSN,DNumber,FromDate

FROM Affiliation UNION

SELECT SSN,DNumber,ToDate FROM Affiliation

CREATE VIEW ProjPeriodsC3(SSN,DNumber,

FromDate,ToDate) as

SELECT P1.SSN,P1.DNumber,P1.Day,P2.Day

FROM ProjChangesC3 P1, ProjChangesC3 P2

WHERE P1.SSN=P2.SSN

AND P1.DNumber=P2.DNumber AND P1.Day<P2.Day

AND NOT EXISTS (SELECT * FROM ProjChangesC3 P3

WHERE P1.SSN=P3.SSN AND P1.DNumber=P3.DNumber

AND P1.Day<P3.Day AND P3.Day<P2.Day)

View Aff_WO realizes a temporal join of Affiliation and
WorksOn (without the PNumber attribute). This collects the
days when an employee starts or finishes to work in a project
of his/her department. Then, view ProjChangesC3 extracts
those days from the previous view as well as the start and
end day of affiliation of an employee to a department. The
latter are needed to take into account the period between

the beginning of an affiliation and the first time that the
employee works in a project (as shown in the diagram), and
the period between the last time that the employee works
in a project and the end of the affiliation. Finally, view
ProjPeriodsC3 constructs the periods from the above days.

The second step computes the universal quantifier on these
periods.

CREATE VIEW TempUnivC3(SSN,FromDate,ToDate) as

SELECT DISTINCT P.SSN,P.FromDate,P.ToDate

FROM ProjPeriodsC3 P WHERE NOT EXISTS (

SELECT * FROM Controls C WHERE P.DNumber=C.DNumber

AND NOT EXISTS (SELECT * FROM WorksOn W

WHERE C.PNumber=W.PNumber AND P.SSN=W.SSN

AND W.FromDate<=P.FromDate

AND P.ToDate<=W.ToDate))

Finally, the third step is to coalesce the above view.

Case 4.All tables are temporal.

A
E,D

C1
D,P1

C2
D,P2

W1
E,P1

W2
E,P2

Result
✓ ✕ ✓ ✕ ✓ ✓ ✕

The above diagram shows possible values in the three ta-
bles and the result of the query. In the diagram W1 and
W2 represent two rows of WorksOn relating employee E with
projects P1 and P2, C1 and C2 represent two rows of Controls
relating department D with the two projects, and A repre-
sents a row of Affiliation relating employee E with de-
partment D. Finally, Result shows the periods for which the
universal quantification must be calculated. Notice that the
end date of W1 does not induce a period in the result since
at that time project P1 is not controlled by E’s department.

For this query the first step constructs the periods on
which the universal quantifier must be computed as follows.

CREATE VIEW Aff_Cont(SSN,DNumber,PNumber,

FromDate,ToDate) as

SELECT DISTINCT A.SSN,A.DNumber,C.PNumber,

maxDate(A.FromDate,C.FromDate),

minDate(A.ToDate,C.ToDate)

FROM Affiliation A, Controls C

WHERE A.DNumber=C.DNumber

AND maxDate(A.FromDate,C.FromDate) <

minDate(A.ToDate,C.ToDate)

CREATE VIEW Aff_Cont_WO(SSN,DNumber,PNumber,

FromDate,ToDate) as

SELECT DISTINCT A.SSN,A.DNumber,W.PNumber,

maxDate(A.FromDate,W.FromDate),

minDate(A.ToDate,W.ToDate)

FROM Aff_Cont A, WorksOn W

WHERE A.PNumber=W.PNumber AND A.SSN=W.SSN

AND maxDate(A.FromDate,W.FromDate) <

minDate(A.ToDate,W.ToDate)

CREATE VIEW ProjChangesC4(SSN,DNumber,Day) as

SELECT DISTINCT SSN,DNumber,FromDate

FROM Aff_Cont UNION

SELECT DISTINCT SSN,DNumber,ToDate

FROM Aff_Cont UNION

SELECT DISTINCT SSN,DNumber,FromDate

FROM Aff_Cont_WO UNION

SELECT DISTINCT SSN,DNumber,ToDate

FROM Aff_Cont_WO UNION

SELECT SSN,DNumber,FromDate

FROM Affiliation UNION

SELECT SSN,DNumber,ToDate FROM Affiliation

CREATE VIEW ProjPeriodsC4(SSN,DNumber,

FromDate,ToDate) as

SELECT P1.SSN,P1.DNumber,P1.Day,P2.Day

FROM ProjChangesC4 P1, ProjChangesC4 P2

WHERE P1.SSN=P2.SSN AND P1.DNumber=P2.DNumber

AND P1.Day<P2.Day AND NOT EXISTS (

SELECT * FROM ProjChangesC4 P3

WHERE P1.SSN=P3.SSN AND P1.DNumber=P3.DNumber

AND P1.Day<P3.Day AND P3.Day<P2.Day)

View Aff_Cont realizes a temporal join of tables Affiliation
and Controls. This view is then used on view Aff_Cont_WO

to realize a temporal join of the three tables Affiliation,
Controls, and WorksOn. This computes the days in which
an employee starts or finishes to work in a project of his/her
department. Then, view ProjChangesC4 extracts those days
from the previous views as well as the start and end day of
affiliation of an employee to a department. Finally, view
ProjPeriodsC4 constructs the periods from these days.

The second step computes the universal quantifier on these
periods as follows.

CREATE VIEW TempUnivC4(SSN,FromDate,ToDate) as

SELECT DISTINCT P.SSN,P.FromDate,P.ToDate

FROM ProjPeriodsC4 P WHERE NOT EXISTS (

SELECT * FROM Controls C WHERE P.DNumber=C.DNumber

AND C.FromDate<=P.FromDate AND P.ToDate<=C.ToDate

AND NOT EXISTS (SELECT * FROM WorksOn W

WHERE C.PNumber=W.PNumber AND P.SSN=W.SSN

AND W.FromDate<=P.FromDate

AND P.ToDate<=W.ToDate))

Finally, in the third step the above view is coalesced.

5. CONCLUSION
In this paper we adopted a practitioner’s approach and

showed how to compute temporal aggregation and temporal
universal quantification in standard SQL. This provides a
solution for users that need such time-varying facilities in
their applications.

We randomly generated a set of coalesced tables having
100, 1K, 10K, 100K, and 1M 1ines using SQL Server 2000 on
a Pentium 4 machine with 1G of RAM. Our experimental re-
sults showed that the complexity of the queries is high. Per-
formance may be significantly improved by using procedural
SQL (e.g., T-SQL for SQL Server) with cursors in some
steps. In particular, the views SalPeriods, SalPeriodsDep,
and the 3 views ProjPeriodsC2-C4 are extremely inefficient
while being conceptually very simple: they just construct
time periods from a set of dates. The reason comes from the
inner NOT EXISTS used for ensuring that P2.Day is the next
date from P1.Day. Replacing these views by T-SQL proce-
dures accessing the dates in ascending order using cursors

decreased considerably the complexity. Similarly, for large
tables it is more efficient to realize coalescing using cursors.
instead of the declarative query given in Section 2.2. Pursu-
ing these optimization efforts constitutes a direction for our
future work.

Obviously, the best solution would be that the DBMS pro-
vide such time-varying facilities in a native way, since that
would increase both database performance and application
development productivity. Several solutions have been pro-
posed for computing temporal aggregates such as aggrega-
tion trees [5], SB-trees [6] or balanced trees [12].

6. REFERENCES
[1] M. Böhlen, R. Snodgrass, and M. Soo. Coalescing in

temporal databases. In Proc. of the 22th Int. Conf. on
Very Large Data Bases, pages 180–191, 1996.

[2] H. Darwen. Valid time and transaction time
proposals: Language design aspects. In Etzion et al.
[4], pages 195–210.

[3] C. Date, H. Darwen, and N. Lorentzos. Temporal Data
and the Relational Model. Morgan Kaufmann, 2002.

[4] O. Etzion, S. Jajodia, and S. Sripada, editors.
Temporal Databases: Research and Practice. LNCS
1399. Springer-Verlag, 1998.

[5] N. Kline and R. Snodgrass. Computing temporal
aggregates. In Proc. of the 11th Int. Conf. on Data
Engineering, pages 222–231, 1995.

[6] B. Moon, I. Vega-López, and V. Immanuel. Efficient
algorithms for large-scale temporal aggregation. IEEE
Trans. on Knowledge and Data Engineering,
15(3):744–759, 2003.

[7] R. Snodgrass, editor. The TSQL2 Temporal Query
Language. Kluwer, 1995.

[8] R. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 2000.

[9] R. Snodgrass, M. Böhlen, C. Jensen, and N. Kline.
Adding valid time to SQL/Temporal. ANSI
X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL
MAD-146r2, 1996.

[10] R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner.
Adding transaction time to SQL/Temporal: Temporal
change proposal. ANSI X3H2-96-152r, ISO-ANSI
SQL/ISO/IECJTC1/SC21/WG3 DBL MCI-143, 1996.

[11] R. Snodgrass, M. Böhlen, C. Jensen, and A. Steiner.
Transitioning temporal support in TSQL2 to SQL3. In
Etzion et al. [4], pages 150–194.

[12] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. Very Large Data
Bases Journal, 12(3):262–283, 2003.

Acknowledgements The author would like to thank Jef
Wijsen and Alain Pirotte for their insightful comments that
allowed to improve the quality of the paper.

