
A Prolog-based Architecture for an Object-Oriented
CASE Shell ∗

Esteban Zimányi † Manuel Kolp ‡

Abstract

The goal of this paper is to show how Prolog can be used as the sole programming
language for the development of a highly modular and customizable CASE shell.
This CASE shell, called Eroos Case, supports the process of object-oriented method
engineering and object-oriented development and includes a sophisticated Graphical
User Interface. We explain the essential role played by Prolog in developing such a
CASE shell, illustrating the advantages and facilities of using Prolog with respect
to other imperative programming languages.

Keywords: Prolog, object-oriented development, CASE.

1 Introduction

Since the early days of software engineering, analysts and developers have realized the
importance of a systematic approach to the software development process. The first
system development methods used a “structured” approach. While these methods were
suitable for describing systems driven by data transformations, they were inadequate for
coping with more sophisticated technologies like networks, distributed computing, real-
time systems or sophisticated man-machine interfaces. A key problem is that structured
methods are only of limited use in describing the run-time behavior of hardware and
software applications.

Object-oriented (OO) methods (e.g., [21, 20, 4, 5, 22, 8, 17, 1, 6]) aim at remedying
the situation. This led to a new way of thinking about problems with models organised
around real-world concepts. The fundamental construct is the object, which combines
both data structure and behavior in a single entity. Object-oriented methods are useful for
understanding problems, communicating with application experts, modeling entreprises,
preparing documentation and designing programs and information systems.

∗This work is part of the EROOS (Evaluation and Research on Object-Oriented Strategies) project,
principally based at the University of Louvain and the University of Brussels.
†University of Brussels, INFODOC, 50 Av. F.D. Roosevelt, CP 175-2, 1050 Brussels, Belgium, e-mail:

ezimanyi@ulb.ac.be
‡University of Louvain, IAG-QANT, 1 Place des Doyens, 1348 Louvain-La-Neuve, Belgium, e-mail:

kolp@qant.ucl.ac.be.

OO methods generally agree on the decomposition of the development life cycle into
several steps: requirements specification, analysis, system design, object design, and im-
plementation. Requirements specification consists of eliciting requirements from the users.
Analysis starts from these requirements and builds a model of the real-world situation
showing its important properties. System design makes high-level decisions about the
overall architecture of the system and its components. Object design builds a design
model based on the analysis model but containing implementation details. Implementa-
tion translates the object classes and relationships developed during object design into a
particular programming language, database or hardware implementation.

OO methods use several kinds of models to describe a system. Each model captures a
particular type of information or viewpoint about the system at a particular step of the
development life cycle. These models are orthogonal parts of the description of a complete
system and are cross-linked. A few examples of models proposed by the different methods
are as follows.

An object model describes the static structure of the objects in a system; usually such
a model is a variant of the classical entity-relationship (ER) model. A dynamic model
describes the aspects of a system that change over time and implements the control aspects
of a system; such a model is usually based on state machines, statecharts, or Petri nets. A
functional model describes the data value transformations within a system; usually such
a model is a variant of the data flow diagrams. A requirements model, usually based on
use cases, specifies the system operations, i.e., the set of transactions between the system
and the agents in its environment. Object interaction graphs define an implementation of
system operations stating the objects involved and how they communicate to realize the
specification.

Each OO method has its own characteristics both with respect to the kinds of models
they use to represent a system and to the steps prescribed to construct such models
(the process). Some models appear in several methods, like the object model which is
common to all methods. However the variations of such models in each method may be
significant. For example, there is still a debate on whether an object model should contain
relationships of the kind found in ER models.

Significant research in Computer-Aided Software Engineering (CASE) tools has been
spurred on by rapid advances in computing power and by the ever-increasing complexity
of software development (e.g. [16]). These tools support the multiple tasks of the software
development life cycle and aim at improving both the productivity and the quality of the
software by taking care of tedious tasks like consistency checking, diagram storage, project
management, etc., and by allowing code generation.

However, new objectives for OO development continually arise. In particular, tech-
nological aspects such as client/server architectures, distributed computing or parallel
information systems, raise new requirements for altering the methodological basis of soft-
ware development. These new needs lead to the concept of method engineering which
concerns the specification of the syntax and semantics of modeling notations, specifica-
tion tasks and their dependencies, and modeling the organization of tasks among the
various actors [16]. To support this activity new computerised systems called Computer-
Aided Method Engineering (CAME) tools are developed for allowing the user to correctly
manage, create or customize design methods to fit a given development situation.

In this modeling and development context, we are currently implementing in Prolog

a flexible CASE shell [27] supporting both tasks of method engineering and OO develop-
ment. Several development methods such as [20, 6, 12] have already been implemented
in the shell.

A high degree of modularity and flexibility characterizes our CASE and allows the
software developer to configure the implemented methods and the ways these methods
are supported with respect to the user’s requirement specifications. Thus, it supports
incremental method engineering: methods can be gradually customized, expanded, re-
fined, reduced, and formalized based on users’ needs and the changing demands of the
development life cycle. One important characteristic of our system is the concept of
representational independence: while the conceptual and representational constructs can
combined in a flexible way in the modeling environment, they are implemented separately.

The use of Prolog (e.g. [13, 3, 2, 23]) for completely building our CASE environment
is essential to our approach.

First, the declarative nature of Prolog offers, of course, several well-known advantages
over conventional programming languages such as clarity, modularity, conciseness, and
legibility. As a result, programs are much closer to the developer’s perception of the
domain and, for this reason, much easier to maintain. This is especially important in the
context of large-scale programming.

Our system has a highly modular architecture to be able to manipulate different design
methods, each one composed of different models. The fact that Prolog is a dynamic
language with untyped variables allowed us to implement different levels of abstraction,
realized by the separation of abstract and concrete primitives. Abstract primitives are
low-level rules and primitives common to any modules, while concrete primitives are rules
specific to a particular modules. As explained in Section 2, Prolog allows us to define
an integrated three-layer architecture in which the abstract primitives are grouped in a
kind of Operating System called Eroos engine while the concrete primitives, grouped in
concrete model or method subsystems, are “plugged in” over the Eroos engine.

Prolog offers a powerful and expressive development environment allowing to separate
concepts from algorithmic control. As will be explained in Section 6, to achieve repre-
sentational independence, the fact base of our system consists of two repositories: one
stores concepts and the other stores their graphical representation. These repositories
were exploited by the Prolog inference engine, using the mechanisms of pattern-matching
and backtracking.

Second, and more important, we use Prolog as the only language for constructing both
the Graphical User Interface (GUI) and the core of the system. The aim of this paper
is to concretely show that, contrary to what is most frequently believed, developing the
entire application in Prolog is better and more consistent than the alternative approach of
implementing the GUI in an imperative graphical development language such as Visual-
Basic or Visual C++ and implementing the inference engine of the system in Prolog.
This alternative approach is more complex, not uniform and sometimes not elegant: for
instance, in such a dual approach in Windows, the Prolog inference engine must be called
through Dynamic Link Libraries (DLLs) in order to be able to use it with the running
GUI.

Again, as will be shown in Sections 6 and 7, the memory management features of Prolog
offer facilities for graphics and GUI development. In constrast with other imperative
languages, Prolog does memory management automatically, freeing the programmer from

this error-prone task. Thus, the developer always works with expressive names instead
of low-levels pointers. This was a major benefit when working with the fairly complex
dynamic structures of graphical applications and sophisticated user interfaces.

Third, Prolog is better suited to CASE prototype design than conventional languages:
its declarative nature encourages incremental prototyping where code is gradually fleshed
out in a top-down manner over a period of time. Rather than throwing away the prototype
and re-writing the final program from scratch, incremental prototyping saves development
time and costs, and allows continuous user feedback. Imperative languages are not really
suited for incremental prototyping. In this context, Prolog allows us to easily implement
new models and methods but also to improve and update models and methods already
implemented in the tool.

The rest of the paper is structured as follows. Section 2 presents the general architec-
ture of our CASE shell. The following sections explain and illustrate the main components
of our system. Sections 3 and 4 present, respectively, model management and method
management. Section 5 deals with fact base management. Section 6 is devoted to graph-
ics management while Section 7 explains the GUI management. Section 8 deals with
application management, and Sections 9 and 10 describe example sessions of already im-
plemented models and methods. Related works on other CASE tools for OO development
are discussed in Section 11. Finally, Section 12 gives conclusions and points to further
work.

2 A Three Layer Structure

Figure 1: General layout of the Eroos Case.

As shown in Figure 1, the Eroos Case has a sophisticated GUI including graphical
schema editors, Multiple Document Interface (MDI) windows, palettes, tool bars, status
bars, menus, dialogue boxes etc. This leads to a user-friendly and ergonomic development
environment only requiring basic familiarity with Microsoft Windows or X-Windows in-
terface systems.

Figure 2 shows the architecture of our shell which consists of three integrated layers.

Figure 2: System architecture of the Eroos Case.

The bottom first layer is the Eroos engine, which is the core of the system. It imple-
ments what we call abstract primitives, that is, low-level primitives and rules common to
all modules (models and methods) of higher layers. This first layer can be viewed as a
kind of operating system providing services to the upper modules. The Eroos engine is
composed of six subsystems which are explained next.

The abstract model subsystem defines primitives for defining concrete models (e.g.,
enhanced entity-relationship model) which are implemented in the second layer. Similarly,
the abstract method subsystem contains primitives for defining concrete methods (e.g.,
OMT method) which are implemented in the third layer. The abstract graphics subsystem
provides low-level primitives for defining the graphical representation of models while the
abstract GUI subsystem provides basic rules for manipulating GUI components such as
parent/child windows, menus, dialogue boxes, list boxes, buttons, and palettes. The fact
base manager is in charge of managing and especially checking consistency of the fact
base. Finally, the application manager takes in charge low-level application tasks such as
management of projects, schemas, and reports.

The second layer (model layer) implements specific concrete models, such as enhanced
entity-relationship (ER+), statechart, data flow diagram (DFD), object interaction graphs
(OIG), and use cases. Each concrete model subsystem is composed of three components.
It defines, in a specific model definition component, the conceptual language used to de-
scribe each particular aspect of the system. For example, our ER+ model defines rules

and primitives for the basic ER constructs (e.g. entity, relationtionship, attributes), in
addition to abstraction mechanisms such as generalization, aggregation, aggregated and
derived relationships, as well as several interrelationship constraints. Two other com-
ponents are associated to each concrete model subsystem: a Model GUI component im-
plements GUI management primitives specific to the model while a Graphics Definition
component contains information about the graphical representation of the model abstrac-
tion mechanisms. Each of these concrete model subsystems use the primitives provided
by the Eroos engine.

The third layer (method layer) implements concrete methods such as OMT, Booch,
Jacobson, Fusion, or relational DB design. Each method is implemented by a subsystem
and uses models defined in the model layer. For instance, OMT integrates the ER+,
statechart and DFD models, respectively, as static, dynamic, and functional model. Each
concrete method subsystem is composed of two components. A method definition compo-
nent defines primitives specific to one method such as customization rules for the method
or consistency constraints between its models, while a method GUI contains GUI man-
agement rules associated to a particular method. A concrete method subsystem can also
directly call primitives of the Eroos engine.

As shown by the dashed lines in Figure 2, each concrete model or method is defined by
providing the concrete subsystems corresponding to the abstract subsystems. Examples
of a concrete model and a concrete method are given, respectively, in Sections 3 and 4.

3 Model Subsystems

To each concrete model is associated a set of concepts, each defined by a predicate
concept. This predicate has three arguments: the first one describes the concept with
its arguments, the second one defines the design phase, and the third one represents the
model in which the concept is used. For example, some of the concepts defined in our
ER+ model are the following:

concept(entity(‘Entity Name‘),‘Conceptual‘,‘ER+‘).
concept(relationship(‘Relationship Name‘),‘Conceptual‘,‘ER+‘).
concept(participates(‘Relationship Name‘,‘Participant Name‘,

‘Minimal Cardinality‘,‘Maximal Cardinality‘,‘Role‘),‘Conceptual‘,‘ER+‘).
concept(attribute(‘Owner Name‘,‘Attribute Name‘,‘Minimal Cardinality‘,

‘Maximal Cardinality‘),‘Conceptual‘,‘ER+‘).
concept(identifier(‘Entity Name‘,‘List of Properties‘),‘Conceptual‘,‘ER+‘).
concept(weak_entity(‘Entity Name‘,‘Ident. Relationship‘),‘Conceptual‘,‘ER+‘).
concept(er_fd(‘Owner Name‘,‘Left-Hand Side‘,‘Right-Hand Side‘),‘Conceptual‘,‘ER+‘).
concept(subset_of(‘Left Relationship‘,‘Right Relationship‘),‘Conceptual‘,‘ER+‘).
concept(generalization(‘Superclass Name‘,‘total/partial‘,‘excl/overl‘,

‘Criteria‘,‘Defining Attribute‘),‘Conceptual‘,‘ER+‘).
concept(isa(‘Subclass Name‘,‘Superclass Name‘,‘Criteria‘,‘Defining Expr.‘),‘Conceptual‘,‘ER+‘).
concept(derived_relationship(‘Derived Relationship‘,‘Defining Relationships‘),‘Conceptual‘,‘ER+‘).

Different predicates define the arguments of concepts. For example, the following facts
define some properties of the concept participates, linking an entity to a relationship:

domain(participates,‘Participant Name‘,string).
domain(participates,‘Minimal Cardinality‘,integer).
default_value(participates,‘Minimal Cardinality‘,0).
allow_nulls(participates,‘Role‘).

Predicate domain defines the domain of the argument, default_value states the default
value of the argument, and allow_nulls specifies optional arguments.

To each concept is associated a set of integrity constraints. Integrity checking is
realized at three different levels:

(1) arguments of a concept (ic_arg)
(2) whole concept (ic_concept)
(3) consistency of a model (ic_model).

As will be shown in Section 4, a fourth level defines constraints associated to the
consistency between models, i.e., a method (ic_method). We next give examples of
constraints associated to each of these three levels.

1) ic_arg(entity,‘Entity Name‘,Name) :-
check_neg_refer_int(‘Entity Name‘,Name,relationship(Name)).

2) ic_arg(participates,‘Participant Name‘,Name) :-
check_refer_int(‘Owner Name‘,Name,[entity(Name),relationship(Name)]).

3) ic_concept(participates(_,_,MinCard,MaxCard,_)) :- MinCard > MaxCard,
error_msg(‘Error‘,[‘The Maximal Cardinality must be greater than ‘,

‘or equal to the Minimal Cardinality.‘]),!.
4) ic_concept(participates(RN,PN,_,_,R1)) :- participates(RN,PN,_,_,R2),

(R1=R2,
error_msg(‘Error‘,[‘Entity ‘,PN,‘ already participates in relationship ‘,

RN,‘ with the same role‘])
; R1==‘‘,

error_msg(‘Error‘,[‘Since Entity ‘,PN,‘ already participates in relationship ‘,
RN,‘ then a value for role is required‘])

; R2==‘‘,
error_msg(‘Error‘,[‘Entity ‘,PN,‘ already participates in relationship ‘,

RN,‘ with no role‘])
),!.

5) ic_model(relationship(Rel)) :-
findall(Part,participates(Rel,Part,_,_,_),PartList),length(PartList,N), N<2,
error_msg([‘Relationship ‘,Rel,‘ has less than 2 participating objects.‘]).

6) ic_model(entity(Name)) :- \+(identifier(Name,List)),
error_msg([‘Entity ‘,Name,‘ has no defined identifier.‘]).

The first two constraints are attached to arguments of concepts. The first one checks
that the name of an entity is not the same as the name of a relationship. The second
constraint checks that the participant of a participates predicate is an existing entity or
relationship.

The third constraint is attached to predicate participates: it states that the maximal
cardinality must be greater than or equal to the minimal cardinality. The fourth rule
defines a more complex constraint: when an object (or a relationship) participates more
than once in a relationship, each participation must have a different role.

It is important to notice that ic_arg and ic_concept rules are fired when the user
wants to add or modify a fact from the concept repository using dialogue boxes as those
given in Figure 5. When the user press the OK button, each argument is validated by
firing the ic_arg rules; the third argument passed to such rules is the value typed in the
edit control. When all arguments are validated individually, the ic_concept rules are
then fired; the argument passed to such rules is the fact the user wants to add to the
concept repository.

The fifth constraint checks model consistency: it verifies that each relationship has at
least two participating objects. The sixth constraint, also for model consistency, checks
that every entity has at least one identifier.

Notice that when a constraint is violated, appropriate messages are displayed in dia-
logue boxes through predicate error_msg.

In addition, each model must define a set of cascade rules that must be enforced
when the fact base is modified. These rules are defined by add_rule, modify_rule, and
delete_rule. For example:

1) modify_rule(entity(OldName),entity(NewName)) :-
modify_cascade(attribute(OldName,Attr,MinC,MaxC),attribute(NewName,Attr,MinC,MaxC)).

2) modify_rule(relationship(OldName),relationship(NewName)) :-
modify_cascade(participates(OldName,PN,MinC,MaxC,R),participates(NewName,PN,MinC,MaxC,R)).

3) delete_rule(entity(Name)) :- delete_cascade(attribute(Name,_,_,_)).
4) delete_rule(entity(Name)) :- delete_cascade(identifier(Name,_)).

The first rule is fired when an entity name is changed: it replaces the new entity name
in all associated attribute predicates. As shown by the second rule, similar modify_rule
predicates exist for all interelated model concepts. The third rule is fired when an entity
name is deleted: it deletes in cascade all corresponding attribute predicates while the
fourth rule deletes all identifiers of an entity when this entity is deleted.

The ER+ model explained above is an example of a concrete model defined us-
ing the primitives of the abstract model subsystem of the Eroos engine. As already
said, such primitives are applicable to different models. Examples of such primitives
are check_refer_int, modify_cascade, and delete_cascade used by the rules of the
concrete ER+ subsystem, as explained above. They are shown next.

check_refer_int(Field,Value,Term) :-
not(lst(Term)),!,check_refer_int(Field,Value,[Term]).

check_refer_int(Field,Value,List) :- lst(List),not(exists_or_list(List)),
(List = [Term] -> error_msg([‘The ‘,Field,‘ must be an existing ‘,Term,‘.‘])
; List = [Term1,Term2] -> error_msg([‘The ‘,Field,‘ must be an existing ‘,Term1,

‘ or ‘,Term2,‘.‘])
; ext_pred(List,List1),error_msg([‘The ‘,Field,

‘ must be one of the following ‘,List1,‘.‘])
),!.

Predicate check_refer_int is used in concrete models to check – through predicate
exists_or_list – referential integrity between arguments of two concepts. Another
similar predicate check_neg_refer_int is used to avoid referential integrity between
arguments of two concepts. As can be seen, messages in dialogue boxes are displayed
when the rule is violated in order to help the user correct the fact base.

modify_cascade(OldTerm,NewTerm) :- OldTerm,OldTerm =.. [Pred|_],atom_string(Pred,PredStr),
write_msg1([‘Modifying ‘,PredStr,‘ predicates ...‘]),fail.

modify_cascade(OldTerm,NewTerm) :- retract(OldTerm),assert(NewTerm), fail.
modify_cascade(OldTerm,NewTerm).

delete_cascade(Term) :- Term,functor(Term,Pred),atom_string(Pred,PredStr),
write_msg1([‘Deleting associated ‘,PredStr,‘ predicates ...‘]),fail.

delete_cascade(Term) :- retract(Term),fail.
delete_cascade(Term).

Predicates modify_cascade and delete_cascade are typically abstract primitives
since they manipulate predicates given as arguments. They are totally independent of
concrete models and concepts.

Other examples of primitives are domain, default_value, and allow_nulls, which
were used above for defining the arguments of concepts. Also, several ic_arg, ic_concept,
and specific cascade rules are attached to the abstract model subsystem. For example,
one of them tests that the same fact is not entered twice in the repository.

4 Method Subsystems

A concrete method associates a set of models to each phase of the development life cycle.
For example, the Fusion method associates to the analysis phase an object model, a system
object model, and an operation model. Further, the concrete methods also determine
the fourth level of integrity checking , i.e., the constraints checking consistency between
models. For example, the following constraint

ic_method :- statechart(Statech),\+(attached(Statech,Class)),
error_msg([‘Statechart ‘,Statech,‘ is not attached to a class in the object model.‘]).

checks that every statechart defined in the dynamic model is attached to a class defined
in the object model, while the following constraint

ic_method :- transition(Statech,TransEvt,Cond,Action,OrState,DesState),
attached(Statech,Class),\+(defined_operation(Action,Class)),
error_msg([‘Action ‘,Action,‘ is not defined as an operation of class ‘,Class ‘.‘]).

checks that every action defined in a statechart attached to a class is defined as an
operation in the interface of that class.

Each concrete method customizes its set of models according to the method (and
users’) specificities. For instance, the OMT method does not use derived and subset
relationships (defined in our ER+ model) while the Relational Database Design method
integrates them as an essential mechanism to detect relational redundancies. Therefore,
each concrete method must determine the concepts which are supported by its models.

Also, each method must determine the operations that can be performed in each phase
and model. For example, for the relational database design method, one operation allows
to automatically generate, from an ER+ conceptual schema, a relational database schema
in Inclusion Normal Form. In the same way, in the OMT method, an operation allows to
generate, from a statechart specification, the C++ code that realizes the corresponding
functionality. These operations are briefly described in Sections 9 and 10.

Finally, concrete methods define how to realize a report containing all knowledge of
the repository for a particular phase (e.g., analysis) and model (e.g., object model). Such
reports constitute the textual representation of the graphical models.

The abstract method subsystem defines primitives available to all methods. Examples
of such primitives are load_method and consistency_check for firing the consistency
check between models. Primitives choose_phase and choose_model are used to change
the current phase and model while generate_report is used to generate a report.

Figure 3 shows an example of interaction between abstract and concrete method sub-
systems for generating a report. Predicate generate_report is selected by the user during
a development phase for a particular model (e.g., conceptual DB design and ER+). Such
an abstract primitive needs to know how the report for the phase and model must be
realized. As said, this is defined in concrete method subsystems.

5 Fact Base Manager

This subsystem is in charge of managing the fact base. In fact, there are two differ-
ent fact bases. The concept repository contains facts such as entity(employee) and
relationship(works_on). The graphics repository contains the graphical representation
of the repository concepts: it contains, e.g., the following predicate

-------------**---------------
Report for Application COMPANY
Phase : Conceptual, Model : ER+

-------------**---------------

entity : employee { | entity : project { | entity : department {
identified by : | identified by : | identified by :

enum | pnum | dnum
ename, efname | attributes : | attributes :

attributes : | pname : card = [1,1] | dname : card = [1,1]
address : card = [1,1] | } | }
zip: card = [1,1] | |
city : card = [1,1] | |

} | |
entity : manager { | relationship : reports_to { | relationship : reports_to {

specializes : | participating objects : | participating objects :
employee | manager : card = [1,1] | project : card = [1,m]

identified by : | department : card = [1,m] | department : card = [1,m]
mnum | | }

attributes : | } |
mname : card = [1,1] | |

} | |
| |

relationship : participates { | relationship : sponsored_by { | derived relationship : m_d {
participating objects : | participating objects : | derived from :

employee : card = [1,1] | project : card = [1,1] | is_a, participates,sponsored_by
project : card = [1,m] | department : card = [1,m] | participating objects :

} | } | manager : card = [1,1]
| | department : card = [1,m]
| | }

Figure 3: Generating a report for a development phase and a model.

grafix(er_window_1,123,[brsh(255,255,255,0),pen(0,0,0,1),rect(37,29,107,69),
font(gredit),trns(1),fore(0,0,0),text(40,29,‘employee‘)]

keeping the list of graphical commands that draw a rectangle and the text employee on the
graphical window er_window_1. This is the graphical representation of entity(employee).

As already said, this separation of both repositories allows us to achieve representa-
tional independence. However, it is necessary to have a predicate gfx_conc that makes
the correspondence between each concept and its graphical representation. This predicate
is used, e.g., when the user clicks the right button on an graphical object, to determine
the corresponding concept that is to be modified.

Each graphical object has a unique Object Identifier (OID), kept in the second argu-
ment of the grafix predicate. OIDs are necessary in particular to maintain connections
between graphical objects. For example the fact participates(works,employee,1,1,’’),
linking employee with relationship works is represented graphically with a line connect-
ing the corresponding square and diamond. Since all the caracteristics of the square and
the diamond can change (i.e., color, size, text annotation), OIDs allow to keep track of
the connection between them.

Predicates add_element, modify_element, and delete_element are available to mod-
ify the contents of the concept repository. However, when the concept repository is mod-
ified, it must be ensured that it remains consistent. As explained above, four levels of
integrity checking are defined. The fact base manager subsystem contains primitives
for firing integrity checks with predicates such as check_ic_arg, check_ic_concept,
check_ic_model, and check_ic_method. It also contains primitives for firing the cascade
rules with predicates fire_add_rules, fire_modify_rules, and fire_delete_rules.

Every modification of the concept repository (such as creating a new entity, connect-
ing an entity with a relationship) implies a graphical primitive to be executed on the
corresponding window. However, some graphical operations do not imply a modification
of the repository (e.g., moving an entity or a relationship in a schema).

Predicates assert_grafix and retract_grafix are used to modify the contents of
the graphics repository. As a side-effect, these predicates draw and delete the graphical
objects in windows.

An important functionality concerning both repositories is to allow the undo/redo
capability when drawing schemas. For this purpose, to each window are associated two
stacks (undo and redo) implemented using the retract and assert predicates.

modify_repositories(Window,GfxObjs,NewGfxObjs,Concepts,NewConcepts) :-
retractall(redo(Window,_,_,_,_)),
asserta(undo(Window,GfxObjs,NewGfxObjs,Concepts,NewConcepts)),
retract_grafix(GfxObjs,Window),assert_grafix(NewGfxObjs,Window),
fire_del_rules(Concepts),fire_add_rules(NewConcepts).

The above predicate is used for every modification of the repositories. The first argu-
ment states which window is concerned. GfxObjs and Concepts are the lists of facts that
has to be removed from, respectively, the graphics and the concept repositories. Simi-
larly, NewGfxObjs and NewConcepts are the list of facts that has to be added to both
repositories.

Thus, after the redo stack for the window has been cleared, an element is pushed
into the undo stack, the old graphical objects are deleted, the new ones are added (using
retract_grafix and assert_grafix), and the same is done for the concepts (using
fire_del_rules and fire_add_rules). If the user wants to undo the operation that
modified the repositories, the inverse operation is realized, the new facts are removed
from the repository, and the old facts are reasserted.

Notice that the list of graphical objects/concepts to be deleted can be empty, e.g.,
when adding a new entity or relationship. The same is true for the list graphical ob-
jects/concepts that has to be added, e.g., when deleting an entity.

6 Graphics Subsystems

Any graphics application needs to maintain a logical representation of the image in any
window, so that it can be repainted when necessary. Operations such as moving, scrolling,
and resizing of windows can cause portions of graphics regions to be uncovered and thus,
the newly exposed areas to be redrawn. This requires that the applications store a copy
of every graphics operation so that it can be repeated on demand. Such information is
kept in the graphics repository as explained in the previous section.

Prolog offers important advantages over conventional programming languages for man-
aging graphical objects, which are often complex and large data structures. The Prolog
built-in knowledge base as well as its pattern matching and backtracking mechanisms
allow to realize graphical manipulations at a more abstract level. Since Prolog is a dy-
namically typed language, complex terms and structures representing graphical objects
can be created and manipulated without knowing their type. The memory required to op-
erate on these structures is dynamically allocated and deallocated by the Prolog run-time

system. So, graphical objects can be manipulated in lists which can grow to an arbitrary
length.

For realizing equivalent manipulations in other imperative languages it is necessary
to use dynamic memory allocation as well as list traversals and memory pointers. Thus,
programmers in C++-like languages must know everything about memory allocation at
compile and run time. This low-level programming task is often hard and difficult and it
requires experimented programmers. In particular, a program can be correctly compiled
and nevertheless contain errors because some pointers do not point to data structures at
run time.

Further, dynamic memory allocation in these conventional languages is not really
manageable because C++ does not provide any form of garbage collection to reclaim the
memory released by defunct objects. In the context of graphical object manipulation, this
can lead to memory overloading. On the contrary, Prolog dynamically manages the system
memory. Of course, such a mechanism can be programmed in imperative languages but
this increases the complexity of development. Notice however that some dynamic OOPLs,
for instance CLOS [9], also provide garbage collection.

It is in the development of the graphics subsystems, explained next, that many of the
advantages of Prolog turned out to be extremely important.

The abstract graphics subsystem defines primitives for manipulating graphics objects
independently of their shape. The particular visual appeareance and the behaviour of
objects is defined by concrete graphics subsystems. For example, the ER+ graphics
subsystem defines the size, color, shape, etc., of the entities, relationships, as well as the
lines connecting them. Furthermore, this ER+ concrete subsystem also determines how
these objects react when they are manipulated, i.e., resized, selected, dragged.

The abstract graphics subsystem was developed with an object-flavored programming
style. As already said, each graphical object has a unique OID. In addition, each predicate
first checks the type of the object passed as argument: if the predicate was defined for this
type, the process goes on; otherwise, the inference engine backtracking mechanism tries to
match another predicate with the same name and the same signature. This object-flavored
programming style combined with our abstract/concrete separation allows encapsulation,
an important advantage of Object-Oriented programming.

The abstract graphics subsystem contains typical low-level graphics primitives not
requiring information about objects. Examples are geometric primitives for manipulat-
ing points, segments, rectangles, and so on. Some abstract graphics primitives are the
following.

A predicate eq_segm([X1,Y1,X2,Y2],[DY,DX,C]) computes the equation of the seg-
ment determined by the points (X1,Y1) and (X2,Y2). Predicate inters_segm([A1,B1,C1],
[A2,B2,C2],[X,Y]) determines the intersection point (X,Y) ot the two segments given
as arguments. A predicate distance([X1,Y1],[X2,Y2],Dist) computes the distance
between two points. Predicate sq_overlap([L,T,R,B],[L1,T1,R1,B1]) tests whether
two squares overlap. Predicate sq_inters([L1,T1,R1,B1],[L2,T2,R2,B2],[L,T,R,B])
computes the intersection of two squares.

Predicate add_connection(Id1,[Id2,X,Y]) allows to add to object Id1 a connection
with object Id2 at point (X,Y). It checks that the point (X,Y) belongs to the object Id.
Other similar rules are del_connection, modify_connection, and retrieve_connection.

Predicate extent returns the physical extent of a graphics sequence, while predicate

shift_args shifts the graphics elements by a specified offset. There are also predicates for
manipulating the “select” corners such as draw_corners, delete_corners. A predicate
test_objects is used to select the objects enclosed by a rectangle drawn on the screen;
these objects can then be moved, deleted, or resized. Other predicates show and store
status information, scroll the image, move (drag) or resize a set of selected objects, magnify
and reduce the scale (zoom-in and zoom-out) of a window.

To facilitate the manipulation of lines a predicate incertitude determines the sen-
sibility area of the mouse cursor around a point. Indeed, a problem that arises when
manipulating lines is that it is difficult to place the cursor exactly over the line (i.e., over
the exact pixel). Therefore, a sensibility zone around this line is declared with predicate
incertitude.

Concrete graphics subsystems are defined for each model defining how objects are
drawn, moved, selected, resized, shifted, etc. Some of the primitives for the concept
entity are explained next.

conc_color(entity,‘Conceptual‘,‘Object‘,0,0,0).
gfx_extent(Gfx,L,T,R,B) :- Gfx=[_Brsh,_Pen,rect(L,T,R,B),_Font,_Trns,_Fore,_Text],!.
hit(Gfx,X,Y) :- Gfx=[_Brsh,_Pen,rect(L,T,R,B),_Font,_Trns,_Fore,_Text],

L =< X, T =< Y, R >= X, B >= Y,!.
gfx_conc(_,_,Gfx,entity(Ent)) :- Gfx=[_Brsh,_Pen,rect(_,_,_,_),_Font,_Trns,_Fore,text(_,_,Ent)],!.
shift_object(Gfx,Dx,Dy,NewGfx) :- Gfx = [Brsh,Pen,rect(|Corners),Font,Trns,Fore,Text(X,Y,Name)],

shift_args(Corners,Dx,Dy,NewCorners), shift_args([X,Y],Dx,Dy,[X1,Y1]),
NewGfx=[Brsh,Pen,rect(|NewCorners),Font,Trns,Fore,Text(X1,Y1,Name)],!.

outline_object(Gfx,OutGfx) :- Gfx = [_Brsh,_Pen,rect(|Corners),_Font,_Trns,_Fore,_Text],
OutGfx = [pen(0,0,255,-2),rect(|Corners)]),!.

Predicate conc_color states the color (a combination of R,G,B) used for drawing
concepts on the screen: e.g., entities are drawn in black. Predicate gfx_extent states
the smaller square enclosing the graphical representation of concepts: for entities this is
determined by the corners of the rectangle. Predicate hit determines whether a point
(X,Y) is situated over a graphical object. Predicate gfx_conc allows to establish the
correspondance between a concept and its graphical representation: for entities it suffices
to see the text annotation inside the square. Predicate shift_object determines how
to shift objects: for entities both the corners of the rectangle and the point (X,Y) of the
text annotation must be shifted (with shift_args). Finally, predicate outline_object
states how objects are outlined when they are being dragged: for entities, a dotted blue
square is drawn on the screen.

Figure 4 shows an example of how the abstract and the concrete graphics subsystems
work together. In Figure 4 (a), the user selects an area in the screen with the mouse cursor.
All objects enclosed in the area are selected. For this, the primitive for selecting an area
(defined in the abstract subsystem) determines the graphical objects to be selected.

Then, the dragging operation can be applied as shown in Figure 4 (b). During the
dragging operation, at each mouse move, the outlines of the objects to be moved must be
drawn. As explained above, the concrete subsystems define how the objects are outlined.
For example, the name of the entities and relationships, as well as the cardinalities of the
participations are omitted in the outlines.

Finally, when the dragging operation is completed the objects must be shifted as shown
in Figure 4 (c). Here also the abstract shifting primitive uses the definition of how the
different objects are shifted, as defined in the concrete subsystems.

Figure 4: Steps of a dragging operation.

7 GUI Subsystems

The abstract GUI subsystem comprises primitives for manipulating GUI elements, such
as menus, dialogue boxes, palettes, status bars and toolbars. This includes, e.g., adding,
removing, selecting and retrieving elements from listboxes, editing and retrieving edit
controls, selecting radio buttons, and manipulating palettes.

A concrete GUI component is associated to each model and to each method. Such
components use the primitives provided by the abstract component. For instance, the
general menus of the Eroos Case as well as the Tasks menu associated to the ER+
schema editor (shown in Figure 1) are defined using the predicate menu_item as follows:

menu_item(main_menu,‘&Application‘,appl_menu,enable,true).
menu_item(main_menu,‘&Phase‘,phase_menu,enable,true).
menu_item(main_menu,‘&Model‘,model_menu,enable,true).
menu_item(main_menu,‘&Schema‘,schema_menu,enable,true).
menu_item(main_menu,‘&Edit‘,edit_menu,enable,true).
menu_item(main_menu,‘&Tasks‘,tasks_menu,enable,true).
menu_item(main_menu,‘&Help‘,help_menu,enable,true).
menu_item(main_menu,‘&Window‘,window_menu,enable,true).

menu_item(tasks_menu,‘&Clear Console‘,1000,enable,clr_console).
menu_item(tasks_menu,‘‘,0,separator,true).
menu_item(tasks_menu,‘List &Elements‘,1001,enable,lst_elements).
menu_item(tasks_menu,‘Chec&k Consistency‘,1002,enable,chk_consist).
menu_item(tasks_menu,‘Generate &Report‘,1003,enable,gen_report).
menu_item(tasks_menu,‘Generate &Logical‘,1004,enable,gen_logical).
menu_item(tasks_menu,‘Normalize &3NF‘,1005,disable,norm_3NF).
menu_item(tasks_menu,‘Normalize &BCNF‘,1006,disable,norm_BCNF).
menu_item(tasks_menu,‘Normalize &INNF‘,1007,disable,norm_INNF).

For each menu item, the following are specified: parent menu, text to display, either the
identifier of the message generated by Windows or the submenu, whether the menu is
enabled, and the predicate to execute when the menu is selected.

Other examples of concrete rules are palette definitions for a specific schema editor.
The ER+ palette given in Figure 1 is defined as follows:

palette(er_palette,10,2,30,30).
default_btn(er_palette,arrow_btn).
palette_btn(er_palette,1,1,arrow_btn,two_state,select_object,‘Ready‘,0).
palette_btn(er_palette,1,2,text_btn,two_state,add_text,‘Add Text Annotation‘,text_cursor).
palette_btn(er_palette,2,1,entity_btn,two_state,add_entity,‘Add Entity‘,entity_cursor).
palette_btn(er_palette,2,2,weak_ent_btn,two_state,add_weak_entity,‘Add Weak Entity‘,weak_entity_cursor).
palette_btn(er_palette,3,1,relation_btn,two_state,add_relation,‘Add Relationship‘,relation_cursor).
palette_btn(er_palette,3,2,der_rel_btn,two_state,add_der_rel,‘Add Derived Relationship‘,der_rel_cursor).
palette_btn(er_palette,4,1,partic_btn,two_state,add_partic,‘Add Participation‘,part_rel_cursor).
palette_btn(er_palette,4,2,aggr_rel_btn,two_state,add_aggr,‘Add Aggregated Relationship‘,aggr_rel_cursor).
[...]

The first line defines the ER+ palette as having 10 × 2 buttons, each of 30 × 30 pixels.
Then each of the buttons is defined with predicate palette_btn. It defines the bitmap to
paint over the button, whether the button is one- or two-state, the predicate to execute
when the button has been pressed, the help message painted in the status bar, and the
cursor that has to be displayed.

As can be imagined, all the actions and graphical manipulations that must be executed
when a mouse button is clicked over a palette button are defined in the abstract GUI
subsystem, they are the same for all the palettes. In addition, the abstract GUI subsystem
also defines generic dialogue boxes for n-ary predicates. For example, the dialogue box
associated to predicate participates is shown in Figure 5 (a).

Figure 5: Two dialogue boxes for the ER+ editor.

These generic dialogue boxes provide basic functionality for modifying the fact base.
This is extremely useful in the first stages of method definition. The method designer can
define customized dialogue boxes for specific concepts, thus enhancing the basic function-
ality. For example, the ER+ model defines customized dialogue boxes several concepts,
one of which is shown in Figure 5 (b).

8 Application Manager

This last subsystem is a classical module of any computerized tool: it is in charge of the
management of applications and files, and requires no further explanations. For applica-
tions, it has predicates such as new_application, open_application, save_application,
and close_application.

Each application is composed of multiple files. For example, a large application will
define an object model represented by a set of separate ER+ schemas, a dynamic model
represented by a set of statechart schemas associated to the different classes and so on.

Therefore, the Application Manager subsystem also has predicates such as new_schema,
open_schema, save_schema, and close_schema.

9 Model Example Sessions

This section briefly presents example sessions of two models (ER+ and statechart) im-
plemented in the Eroos Case. We refer to [10, 12, 26] for a complete description of these
implementations.

In addition to the basic ER concepts (entity, relationship, attribute, identifier and
cardinality), our implementation of the ER+ model [12] takes into consideration some
important abstraction mechanisms such as generalization, aggregation, derived and ag-
gregated relationships, and several interrelationship constraints. It subsumes any object
model of the well-known development methods.

ER+ schemas, such as the University schema shown in Figure 6, are drawn on the
screen using the GUI. As explained in Section 3, they are validated with the integrity
constraints defining the syntax and semantics of the ER+ abstractions.

Figure 6: An ER+ schema for an hypothetical university

Prolog predicates encoding the graphical schemas are automatically generated. Figure
7 shows the fact base corresponding to the University ER+ schema specifications. These
predicates can then be processed by the chosen method, e.g., for translating a conceptual

model comprising several ER+ schemas into a normalized relational database, as described
in the Relational Database Design method in Section 10.

entity(depart). entity(course).
attribute(depart,depNo,1,1). attribute(course,courseNo,1,1).
attribute(depart,depName,1,1). attribute(course,title,1,1).
attribute(depart,location,1,n). attribute(course,nbHours,1,1).
identifier(depart,[depNo]). identifier(course,[courseNo]).
entity(employee). entity(professor).
attribute(employee,empNo,1,1). attribute(professor,status,1,1).
attribute(employee,tel,1,1). attribute(professor,major,1,n).
attribute(employee,empName,1,1). entity(student).
attribute(employee,office,1,1). attribute(student,studNo,1,1).
identifier(employee,[empNo]). attribute(student,studName,1,1).
er_fd(employee,[office],[tel]). attribute(student,year,1,1).
identifier(student,[studNo]).
relationship(teaches). relationship(attends).
participates(teaches,professor,0,n,’’). participates(attends,student,1,n,’’).
participates(teaches,course,1,n,’’). participates(attends,teaches,1,n,’’).
relationship(works). relationship(isaWorks).
participates(works,employee,1,1,’’). participates(isaWorks,professor,1,1,’’).
participates(works,depart,1,n,’’). participates(isaWorks,depart,1,n,’’).
relationship(heads). participates(heads,professor,0,1,’’).
participates(heads,depart,1,n,’’). relationship(supervise).
participates(supervise,professor,0,1,supervisor).
participates(supervise,professor,0,n,supervisee).
generalization(employee,partial,exclusive,’’,’’).isa(professor,employee,’’,’’).
derived_relationship(isaWorks,[professor,works]). subset_of(heads,isaWorks).

Figure 7: Prolog facts representing the University ER+ schema.

Statecharts [7] are an extension of finite state machines and diagrams, with formal
syntax and semantics used for describing system dynamics. Although statecharts were
originally proposed for describing hardware devices, the dynamic models of OO meth-
ods, such as OMT and Booch, use the statechart formalism for modeling the temporal
behaviour of a system.

Our implementation of the statechart model [26] takes into account most of the state-
chart concepts such as events, states, super- and substates, transitions (simple, merging,
concurrent, and splitting), conditions, actions, and history enforcement. The module has
the following functionalities. The dynamic behaviour of a system is specified as a collec-
tion of interacting statecharts, each one attached to a class. As with the ER+ model,
these statecharts can be drawn on the screen via the GUI and are validated with the
integrity constraints. In addition, our module allows to simulate the dynamic behaviour
of the application to test whether it behaves as expected. Finally, the system generates
the C++ code implementing the overall behaviour of the application.

Figure 8 shows the layout of the statechart schema editor. The tasks menu is used for
dynamic simulation. The first option allows to start an object of a class by starting its
associated statechart. Several objects of the same class can be created, each one executing
its own statechart. The second option of the menu allows to stop an object. The third
option shows the status of an object, i.e., the active states of its associated statechart. The
fourth option allows to send an event to an object. The fifth option enables or disables
the predicate printing the status of an object after transitions.

Our C++ code generation for statechart classes is based on an inheritance hierarchy
comprising classes which can be partitioned in two groups: the statechart engine classes
and the application classes. The first group implements the semantics of the statecharts

Figure 8: Menu for the dynamic simulation.

independently of any particular application while the second group is specific to the
application. For additional details of the statechart implementation in C++, we refer to
[25].

To illustrate this C++ code generation, we explain the two top-level predicates gen-
erating the C++ header file and the C++ code file.

gen_header_cpp(Class,StateCh,HFile) :- tell(HFile),
write(’#ifndef _H_’),writeU(StateCh),nl,write(’#define _H_’),writeU(StateCh),nl,
write(’#include <stddef.h>’),nl,write(’#include "statech.h"’),nl,nl,
write(’class ’),writeU(StateCh),write(’;’),nl,nl,
gen_g_state(Class,StateCh),get_states(StateCh,StateList),
gen_state_headers(StateList,Class,StateCh),nl,
gen_statech_header(StateList,StateCh),nl,write(’#endif’),nl,
told,tell(user).

Predicate gen_header_cpp generates the C++ header file. After writing the preamble
in the header file (HFile), it generates the header of the generic state class (gen_g_state),
constructs the list of states of the statechart (get_states), generates the header for
each state class (gen_state_headers), and generates the header of the statechart class
(gen_statech_header).

For instance, the header of the statechart class for a digital watch, generated by
gen_statech_header, is shown next.

class WatchSC: public StChart {
public:
MainState Main; AliveState Alive; DeadState Dead;
StopwatchState Stopwatch; HourState Hour; ResetState Reset;
OperationState Operation; TimerState Timer; DisplayState Display;
NormalState Normal; InsecState Insec; OnState On;
OffState Off;
void reactEvent(int Event);
WatchSC(); // constructor

};

Predicate gen_code_cpp generates the C++ code file.

gen_code_cpp(Class,StateCh,HFile,CFile) :- tell(CFile),
write(’#include <stdio.h>’),nl,write(’#include <iostream.h>’),nl,
write(’#include "statech.h"’),nl,write(’#include "’),write(HFile),write(’"’),nl,nl,
get_states(StateCh,StateList),
gen_state_impl(StateList,Class,StateCh),
gen_sc_constr(StateList,StateCh),told,tell(user).

After writing the preamble in the code file (CFile), it calls gen_state_impl for generating
the implementation of all the states of the statechart, and calls predicate gen_sc_constr
to generate the constructor of the statechart class.

10 A Method Example Session

This section deals with an example session of the relational database design (RDBD)
method implemented in the Eroos Case. We refer to [10, 11, 12] for a complete description
of this implementation.

Nowadays, relational database design typically goes through, first, conceptual (ER)
schema design and, second, translation into a relational schema. One of the originalities
of our RDBD method consists in generating database schemas normalized in Inclusion
Normal Form (IN-NF) [15]. Unlike classical normal forms that only characterize individual
relation schemas, this design criterion removes redundancies (superfluous attributes) in
the database schema considered as a whole.

In practice, the RDBD method works in the Eroos Case as follows. First, an applica-
tion is specified by a set of ER+ schemas customizing the ER+ module exposed above.
Then, the relational translation process takes as input the concept repository encoding
the ER+ specifications, such as the one shown in Figure 7, and generates a relational
database in IN-NF. The method uses an integrated three-step algorithm:

• ER+-to-relational mapping,
• Third normal form normalization of individual relations and key generation,
• database normalization in Inclusion Normal Form.

At each step, new concepts are generated and introduced into the concept repository.
Thus, reports can be provided to the user at any design phase. Figure 9 gives the final fact
base resulting from our RDBD method. These facts correspond to the IN-NF relational
database schema given in Figure 10.

This schema can be provided to the user in a clear and readeable text similar to the
one shown in Figure 3. Notice IN-NF normalization consequences: relation teaches was
removed because it is redundant with respect to relation attends. Also, attribute depNo is
detected as superfluous in heads, and thus rel attrs(heads,[empNo,depNo]) is replaced

rel_attrs(depart,[depNo,depName,location]). rel_attrs(works,[empNo,depNo]).
rel_attrs(employee_a,[empNo,tel,empName]). rel_attrs(employee_b,[tel,office]).
rel_attrs(student,[studNo,studName,year]). rel_attrs(isaWorks,[empNo,depNo]).
rel_attrs(attends,[empNo,courseNo,studNo]). rel_attrs(professor,[empNo,major]).
rel_attrs(course,[courseNo,title,nbHours]). rel_attrs(heads,[empNo]).
rel_attrs(supervisor,[supervisor_empNo,supervisee_empNo]).

key(depart,[depNo]). key(employee_a,[empNo]). key(employee_b,[office]).
key(student,[studNo]). key(course,[courseNo]). key(professor,[empNo]).
key(works,[empNo]). key(heads,[empNo]). key(isaWorks,[empNo]).
key(depart,[depNo]). key(employee_a,[empNo]). key(employee_b,[office]).
key(student,[studNo]). key(course,[courseNo]). key(professor,[empNo]).
key(works,[empNo]). key(heads,[empNo]). key(isaWorks,[empNo]).
key(attends,[studNo,empNo,courseNo]).

fd(employee_a,[empNo],[empName]). fd(depart,[depNo],[depName]).
fd(employee_a,[empNo],[tel]). fd(depart,[depNo],[location]).
fd(employee_a,[empNo],[office]). fd(student,[studNo],[studName]).
fd(employee_b,[office],[tel]). fd(student,[studNo],[year]).
fd(course,[courseNo],[title]). fd(course,[courseNo],[nbHours]).
fd(professor,[empNo],[major]). fd(works,[empNo],[depNo]).
fd(isaWorks,[empNo],[depNo]).

view(isaWorks,[professor,works]).

ind(attends,[studNo],student,[studNo]). ind(student,[studNo],attends,[studNo]).
ind(attends,[courseNo],course,[courseNo]). ind(works,[depNo],depart,[depNo]).
ind(course,[courseNo],attends,[courseNo]). ind(depart,[depNo],works,[depNo]).
ind(works,[empNo],employee_a,[empNo]). ind(isaWorks,[depNo],depart,[depNo]).
ind(employee_a,[empNo],works,[empNo]). ind(isaWorks,[empNo],professor,[empNo]).
ind(attends,[empNo],professor,[empNo]). ind(professor,[empNo],employee_a,[empNo]).
ind(heads,[empNo],professor,[empNo]).
ind(heads,[empNo,depNo],isaWorks,[empNo,depNo]).
ind(employee_a,[tel],employee_b,[tel]). ind(employee_b,[tel],employee_a,[tel]).

Figure 9: Prolog facts representing the University relational database schema in IN-NF.

by rel_attrs(heads,[empNo]) in the final concept repository. These redundancies are
not detected by classical normalization (i.e., third normal form) but are a frequent source
of update anomalies and data incoherences.

In particular, the latter redundancy is associated to the ER cycle implying relation-
ships heads and works and derived relationship isa(P, E) ∧ works in Figure 6. In this
kind of cycle comprising an inclusion constraint (represented by the arrow labeled with
a ⊆), some information can be deduced in more than one way. While these cycles are
semantically correct, they may be sources of relational redundancies. Such redundancies
must be deleted in the corresponding relational database schemas.

11 Related Works

Research on automating software development with computerized tools has been growing
since the late 80’s. This section describes some representative CASE shells, comparying
them with the Eroos Case. However, none of them is implemented in Prolog.

OOTher CASE [24] is a documentation development package for the following meth-
ods/notations: Coad/Yourdon’s OOA method, state machine diagrams, and Jacobson’s
use case diagrams and object interaction diagrams. The system is developed in C++. It
checks consistency between diagrams, and verify consistent naming of objects and meth-
ods.

Figure 10: The University relational database schema in IN-NF

Like the Eroos Case, the tool is built around graphical editors and can provide doc-
umentation for all objects, attributes, methods and associations between objects. C++
headers may be automatically generated from the data schemas – this ensures consistent
naming of member functions and attributes. However, the functionality provided by the
OOTher CASE is rather limited with respect to that of the Eroos Case.

ObjectMaker [14] addresses both project and CASE requirements and supports several
well-known object-oriented and structured methods: ER, statecharts, DFD, uses cases,
Petri nets, Booch, Coad/Yourdon, Fusion, Martin/Odell, Shlaer/Mellor and others. The
system architecture lets the developer use methods and integrate them with other tools,
databases and frameworks. It also allows the users to develop their own code generators
and reverse tools for the language of their choice.

Like the Eroos Case, ObjectMaker allows the designer to select and customize design
methods to match the specific development environment. Language modules provide both
code generation and reverse engineering (automatic diagram generation from source code).
ObjectMaker’s reverse engineering capability can facilitate reuse of existing source code,
providing automatic documentation and supporting the maintenance and re-engineering

of legacy systems. The Eroos Case provides most of the functionality of ObjectMaker,
excepted the reverse engineering capability. Due to the modularity of our system it should
be relatively easy to introduce such capability in the Eroos Case.

MetaEdit+ [18] is a metaCASE, developed in Smalltalk, supporting multiple methods
in a client-server environment. CASE tool support for developer’s own or customized
methods can be built with the method workbench. The system is based on the concept of
representation independence which is similar to ours and uses the concept of what they call
the graph-object-property-role-relationship (GOPRR) metamodel. The GOPRR meta-
model provides modeling tools for most of the widely used system development models
and methods. It can support recursive structures for objects, OO hierarchies, intercon-
nected models and methods, polymorphic modeling concepts, multiple representation of
the same underlying conceptual description and rules for checking model integrity. This
metamodel forms the basis on which various representations of data, including graphical
diagrams but also hypertext and matrix, are built. Some of the OO methods supported
by the tool are OMT, Fusion, Booch, Coad/Yourdon, Shlaer/Mellor, Moses. Again,
the Eroos Case provides most of the functionality of MetaEdit+, excepted client-server
support. We are currently making a comparison of our metamodel and the GOPRR
metamodel to assess their corresponding expression power.

12 Conclusion

Since the recognition of the software crisis in the mid-70’s, researchers have started to
design methods that help analysts and developers construct computerized applications
of increasing complexitiy. Object-oriented methods aim to cope with the inadequacy of
structured methods. This led to a new way of thinking about problems using models or-
ganised around a fundamental construct: the object. However, due to the ever-increasing
complexity of software development, researchers have also focused on providing CASE
and CAME environments helping designers build applications in a more flexible way.

In this context, our goal was to show how Prolog can be used for completely construct-
ing a CASE shell supporting both method engineering and object-oriented development
and including a sophisticated GUI. We explained how the declarative nature of Prolog
programming turned out to be extremely powerful in our implementation.

First, we showed that the CASE shell was conceived with a highly modular architec-
ture. The adaptability of the Eroos Case helps the developer select and tailor analysis and
design methods to match the specific development environment. Thus, different abstrac-
tion mechanisms and models can be customized and combined by the user, respectively,
into a model and a method. Again, as the developer updates and improves his/her pro-
cesses and methods, our system provides an incremental and extensible software engineer-
ing environment to fit the application. In this context, an important feature of our CASE
shell is the representational independence between the conceptual constructs and their
(graphical) representation. These features enable developers to be productive throughout
the development life cycle, from analysis and design to post-delivery maintenance.

Second, we showed that the use of Prolog as the only development language for building
an entire GUI is viable. We firmly believe that the use of only Prolog for developing the
core of the system and the GUI is more coherent than using Prolog for the inference

engine and a conventional imperative language for the GUI.
More important, we showed the ease of using Prolog to develop a graphical environ-

ment. For manipulating complex data structures like graphical objects, Prolog frees the
developer from low-level tasks such as (dynamic) memory allocation and pointer man-
agement. We adopted an object-flavoured programming style using Prolog built-in back-
tracking and pattern-matching mechanisms, to which we added a unique Object Identifier
mechanism. All these benefits lead to rapid prototyping also favoured by the incremen-
tal development environment of Prolog which is not allowed by imperative programming
languages.

Several issues need to be further addressed. Our CASE shell is currently developed on
a PC platform using a Windows LPA Prolog compiler. We are planning to port the system
to Unix and/or Linux workstations. Our Prolog code, especially the code concerning the
Eroos engine primitives, is in fact as far as possible independent of the hardware/software
configuration. Thus, only the OS function calls should be modified.

Our CASE shell provides a powerful testing environment to develop and implement
new modeling abstractions and conceptual languages describing an application through-
out the development life cycle. For instance, we already formalized a mechanism for
the description of object models, called materialization [19]. We are also formalizing the
properties of the aggregation abstraction (part relationship). We plan to implement these
primitives in order to combine them with the abstraction mechanisms already imple-
mented in the ER+ model. Another work concerns the use of aggregation as a dynamic
abstraction, and its interaction with the statechart formalism.

References
[1] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings,

second edition, 1994.

[2] I. Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 1986.

[3] W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, 1984.

[4] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, second edition, 1991.

[5] P. Coad and E. Yourdon. Object-Oriented Design. Prentice Hall, 1991.

[6] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.

[7] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[8] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering : a Use Case Driven Approach. Addison-Wesley, 1992.

[9] S. Keene. Object-Oriented Programming in COMMON LISP: A programmer’s Guide to
CLOS. Addison-Wesley, 1989.

[10] M. Kolp. Elaboration d’un système expert pour la conception de bases de données rela-
tionnelles à partir du modèle entité-association. Mémoire de Licence Spéciale en Sciences

de l’Information et de la Documentation, INFODOC, Université Libre de Bruxelles, Sept.
1994.

[11] M. Kolp and E. Zimányi. Enhanced ER to relational database design and its implementation
in Prolog. Technical Report TR-95/01, INFODOC, Université Libre de Bruxelles, Belgium,
Apr. 1995. Submitted for publication.

[12] M. Kolp and E. Zimányi. Relational database design using an ER approach and Prolog. In
S. Bhalla, editor, Proc. of the 6th Int. Conf. on Information Systems and Management of
Data, CISMOD’95, LNCS 1006, pages 214–231, Bombay, India, Nov. 1995. Springer-Verlag.

[13] R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[14] Leverage Technologists Inc. Objectmaker. At http://stout.levtech.com/levtech-marketing,
1995.

[15] T. Ling and C. Goh. Logical database design with inclusion dependencies. In Proc. of the
8th IEEE Int. Conf. on Data Engineering, Tempe, Arizona, Feb. 1992.

[16] K. Lyytinen and V.-P. Tahvanainen, editors. Next Generation CASE Tools. IOS Press,
1992.

[17] J. Martin and J. Odell. Principles of Object-Oriented Analysis and Design. Prentice Hall,
1992.

[18] MetaCase Consulting. Metaedit+. At http://www.jsp.fi/metacase, 1995.

[19] A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva. Materialization: a powerful and
ubiquitous abstraction pattern. In J. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. of the
20th Int. Conf. on Very Large Databases, pages 630–641, Santiago, Chile, 1994. Morgan
Kaufmann.

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, 1991.

[21] S. Shlaer and S. Mellor. Object-Oriented Systems Analysis: Modelling the World in Data.
Prentice Hall, 1988.

[22] S. Shlaer and S. Mellor. Object Lifecycles: Modelling the World in States. Prentice Hall,
1992.

[23] L. Sterling and E. Shapiro. The Art of Prolog - Advanced Programming Techniques. MIT,
1986.

[24] R. Zielinski. Oother case tool 1.06f. At http://cuiwww.unige.ch/OSG/OOinfo/FAQ/oo-
faq-S-11.19.0.1.html, 1994.

[25] E. Zimányi. Statecharts and their implementation in C++. Technical Report TR-94/01,
INFODOC, Université Libre de Bruxelles, Belgium, Apr. 1994. Submitted for publication
in Journal of Object-Oriented Systems.

[26] E. Zimányi. Statecharts and object-oriented development: a CASE perspective. In Proc.
of the 3rd Int. Conf. on Practical Application of Prolog, PAP’95, pages 697–718, Paris,
France, Apr. 1995.

[27] E. Zimányi and M. Kolp. Using Prolog to implement a CASE shell for Object-Oriented
development. In Proc. of the 8th Symposium and Exhibition on Industrial Application of
Prolog, INAP’95, pages 41–48, Tokyo, Japon, Oct. 1995.

